BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 31430520)

  • 1. Role of epigenetics in zebrafish development.
    Balasubramanian S; Raghunath A; Perumal E
    Gene; 2019 Nov; 718():144049. PubMed ID: 31430520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The developmental epigenomics toolbox: ChIP-seq and MethylCap-seq profiling of early zebrafish embryos.
    Bogdanović O; Fernández-Miñán A; Tena JJ; de la Calle-Mustienes E; Gómez-Skarmeta JL
    Methods; 2013 Aug; 62(3):207-15. PubMed ID: 23624103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetics, development, and cancer: zebrafish make their mark.
    Mudbhary R; Sadler KC
    Birth Defects Res C Embryo Today; 2011 Jun; 93(2):194-203. PubMed ID: 21671358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reprogramming histone modification patterns to coordinate gene expression in early zebrafish embryos.
    Zhu W; Xu X; Wang X; Liu J
    BMC Genomics; 2019 Mar; 20(1):248. PubMed ID: 30922236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin states of developmentally-regulated genes revealed by DNA and histone methylation patterns in zebrafish embryos.
    Lindeman LC; Winata CL; Aanes H; Mathavan S; Alestrom P; Collas P
    Int J Dev Biol; 2010; 54(5):803-13. PubMed ID: 20336603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental epigenetics in zebrafish.
    Cavalieri V; Spinelli G
    Epigenetics Chromatin; 2017 Oct; 10(1):46. PubMed ID: 28982377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental chemicals differentially affect epigenetic-related mechanisms in the zebrafish liver (ZF-L) cell line and in zebrafish embryos.
    Blanc M; Rüegg J; Scherbak N; Keiter SH
    Aquat Toxicol; 2019 Oct; 215():105272. PubMed ID: 31442592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zebrafish embryos as a screen for DNA methylation modifications after compound exposure.
    Bouwmeester MC; Ruiter S; Lommelaars T; Sippel J; Hodemaekers HM; van den Brandhof EJ; Pennings JL; Kamstra JH; Jelinek J; Issa JP; Legler J; van der Ven LT
    Toxicol Appl Pharmacol; 2016 Jan; 291():84-96. PubMed ID: 26712470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linking epigenetics to lipid metabolism: focus on histone deacetylases.
    Ferrari A; Fiorino E; Giudici M; Gilardi F; Galmozzi A; Mitro N; Cermenati G; Godio C; Caruso D; De Fabiani E; Crestani M
    Mol Membr Biol; 2012 Nov; 29(7):257-66. PubMed ID: 23095054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmed Effects in Neurobehavior and Antioxidative Physiology in Zebrafish Embryonically Exposed to Cadmium: Observations and Hypothesized Adverse Outcome Pathway Framework.
    Ruiter S; Sippel J; Bouwmeester MC; Lommelaars T; Beekhof P; Hodemaekers HM; Bakker F; van den Brandhof EJ; Pennings JL; van der Ven LT
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27827847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Packaging development: how chromatin controls transcription in zebrafish embryogenesis.
    Horsfield JA
    Biochem Soc Trans; 2019 Apr; 47(2):713-724. PubMed ID: 30952803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetics in development.
    Kiefer JC
    Dev Dyn; 2007 Apr; 236(4):1144-56. PubMed ID: 17304537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The sperm epigenome and potential implications for the developing embryo.
    Jenkins TG; Carrell DT
    Reproduction; 2012 Jun; 143(6):727-34. PubMed ID: 22495887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global changes in genomic methylation levels during early development of the zebrafish embryo.
    Mhanni AA; McGowan RA
    Dev Genes Evol; 2004 Aug; 214(8):412-7. PubMed ID: 15309635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prepatterning of developmental gene expression by modified histones before zygotic genome activation.
    Lindeman LC; Andersen IS; Reiner AH; Li N; Aanes H; Østrup O; Winata C; Mathavan S; Müller F; Aleström P; Collas P
    Dev Cell; 2011 Dec; 21(6):993-1004. PubMed ID: 22137762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retention of paternal DNA methylome in the developing zebrafish germline.
    Skvortsova K; Tarbashevich K; Stehling M; Lister R; Irimia M; Raz E; Bogdanovic O
    Nat Commun; 2019 Jul; 10(1):3054. PubMed ID: 31296860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How to analyse epigenetic marks?
    Ammerpoht O; Siebert R
    Pediatr Endocrinol Rev; 2011 Sep; 9 Suppl 1():511-4. PubMed ID: 22423507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fipronil-induced enantioselective developmental toxicity to zebrafish embryo-larvae involves changes in DNA methylation.
    Qian Y; Wang C; Wang J; Zhang X; Zhou Z; Zhao M; Lu C
    Sci Rep; 2017 May; 7(1):2284. PubMed ID: 28536466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Relationship between epigenetics of sperm and embryogenesis].
    He YF; Ma JH; Pan LJ; Huang YF
    Zhonghua Nan Ke Xue; 2014 Aug; 20(8):734-7. PubMed ID: 25195372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Histone lysine methylation and epigenetics].
    Ueda J; Shinkai Y
    Tanpakushitsu Kakusan Koso; 2006 Nov; 51(14 Suppl):2096-101. PubMed ID: 17471917
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.