BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31430532)

  • 1. Model-based Bayesian inference of brain oxygenation using quantitative BOLD.
    Cherukara MT; Stone AJ; Chappell MA; Blockley NP
    Neuroimage; 2019 Nov; 202():116106. PubMed ID: 31430532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulations of the effect of diffusion on asymmetric spin echo based quantitative BOLD: An investigation of the origin of deoxygenated blood volume overestimation.
    Stone AJ; Holland NC; Berman AJL; Blockley NP
    Neuroimage; 2019 Nov; 201():116035. PubMed ID: 31326570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interleaved quantitative BOLD: Combining extravascular R
    Lee H; Englund EK; Wehrli FW
    Neuroimage; 2018 Jul; 174():420-431. PubMed ID: 29580967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Streamlined quantitative BOLD for detecting visual stimulus-induced changes in oxygen extraction fraction in healthy participants: toward clinical application in human glioma.
    Arzanforoosh F; Berman AJL; Smits M; Warnert EAH
    MAGMA; 2023 Dec; 36(6):975-984. PubMed ID: 37556086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sources of systematic error in calibrated BOLD based mapping of baseline oxygen extraction fraction.
    Blockley NP; Griffeth VE; Stone AJ; Hare HV; Bulte DP
    Neuroimage; 2015 Nov; 122():105-13. PubMed ID: 26254114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Baseline oxygenation in the brain: Correlation between respiratory-calibration and susceptibility methods.
    Fan AP; Schäfer A; Huber L; Lampe L; von Smuda S; Möller HE; Villringer A; Gauthier CJ
    Neuroimage; 2016 Jan; 125():920-931. PubMed ID: 26549301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A streamlined acquisition for mapping baseline brain oxygenation using quantitative BOLD.
    Stone AJ; Blockley NP
    Neuroimage; 2017 Feb; 147():79-88. PubMed ID: 27915118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of gradient echo and gradient echo sampling of spin echo sequence for the quantification of the oxygen extraction fraction from a combined quantitative susceptibility mapping and quantitative BOLD (QSM+qBOLD) approach.
    Hubertus S; Thomas S; Cho J; Zhang S; Wang Y; Schad LR
    Magn Reson Med; 2019 Oct; 82(4):1491-1503. PubMed ID: 31155754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using an artificial neural network for fast mapping of the oxygen extraction fraction with combined QSM and quantitative BOLD.
    Hubertus S; Thomas S; Cho J; Zhang S; Wang Y; Schad LR
    Magn Reson Med; 2019 Dec; 82(6):2199-2211. PubMed ID: 31273828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vascular space occupancy asymmetric spin echo (VASO-ASE) for non-invasive quantification of cerebral oxygen extraction fraction.
    Waddle SL; Garza M; Ying C; Davis LT; Jordan LC; An H; Donahue MJ
    Magn Reson Med; 2023 Jul; 90(1):211-221. PubMed ID: 36880522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of oxygen extraction fraction measurement by qBOLD technique.
    He X; Zhu M; Yablonskiy DA
    Magn Reson Med; 2008 Oct; 60(4):882-8. PubMed ID: 18816808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel Bayesian approach to accounting for uncertainty in fMRI-derived estimates of cerebral oxygen metabolism fluctuations.
    Simon AB; Dubowitz DJ; Blockley NP; Buxton RB
    Neuroimage; 2016 Apr; 129():198-213. PubMed ID: 26790354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative BOLD: mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: default state.
    He X; Yablonskiy DA
    Magn Reson Med; 2007 Jan; 57(1):115-26. PubMed ID: 17191227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospects for investigating brain oxygenation in acute stroke: Experience with a non-contrast quantitative BOLD based approach.
    Stone AJ; Harston GWJ; Carone D; Okell TW; Kennedy J; Blockley NP
    Hum Brain Mapp; 2019 Jul; 40(10):2853-2866. PubMed ID: 30860660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen extraction fraction mapping at 3 Tesla using an artificial neural network: A feasibility study.
    Domsch S; Mürle B; Weingärtner S; Zapp J; Wenz F; Schad LR
    Magn Reson Med; 2018 Feb; 79(2):890-899. PubMed ID: 28504360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of the hemodynamic response in event-related functional MRI: Bayesian networks as a framework for efficient Bayesian modeling and inference.
    Marrelec G; Ciuciu P; Pélégrini-Issac M; Benali H
    IEEE Trans Med Imaging; 2004 Aug; 23(8):959-67. PubMed ID: 15338730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian comparison of spatially regularised general linear models.
    Penny W; Flandin G; Trujillo-Barreto N
    Hum Brain Mapp; 2007 Apr; 28(4):275-93. PubMed ID: 17133400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian inference of hemodynamic changes in functional arterial spin labeling data.
    Woolrich MW; Chiarelli P; Gallichan D; Perthen J; Liu TT
    Magn Reson Med; 2006 Oct; 56(4):891-906. PubMed ID: 16964610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-invasive multiparametric qBOLD approach for robust mapping of the oxygen extraction fraction.
    Domsch S; Mie MB; Wenz F; Schad LR
    Z Med Phys; 2014 Sep; 24(3):231-42. PubMed ID: 24743060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle filtering for nonlinear BOLD signal analysis.
    Johnston LA; Duff E; Egan GF
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):292-9. PubMed ID: 17354784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.