BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 31430565)

  • 81. Abeta as a bioflocculant: implications for the amyloid hypothesis of Alzheimer's disease.
    Robinson SR; Bishop GM
    Neurobiol Aging; 2002; 23(6):1051-72. PubMed ID: 12470802
    [TBL] [Abstract][Full Text] [Related]  

  • 82. [Formation and participation of nano-amyloids in pathogenesis of Alzheimer's disease and other amyloidogenic diseases].
    Mal'tsev AV; Galzitskaia OV
    Biomed Khim; 2010; 56(6):624-38. PubMed ID: 21395066
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Molecular mechanisms of amyloid oligomers toxicity.
    Kayed R; Lasagna-Reeves CA
    J Alzheimers Dis; 2013; 33 Suppl 1():S67-78. PubMed ID: 22531422
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue.
    Liu J; Costantino I; Venugopalan N; Fischetti RF; Hyman BT; Frosch MP; Gomez-Isla T; Makowski L
    Sci Rep; 2016 Sep; 6():33079. PubMed ID: 27629394
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A Comprehensive Review on Inorganic Nanoparticles as Effective Modulators of Amyloidogenesis.
    Chakraborty D; Mukherjee A; Sarkar N
    Protein Pept Lett; 2023; 30(8):640-652. PubMed ID: 37409548
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Amyloid binding ligands as Alzheimer's disease therapies.
    Lee VM
    Neurobiol Aging; 2002; 23(6):1039-42. PubMed ID: 12470800
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Dietary lipophilic iron alters amyloidogenesis and microglial morphology in Alzheimer's disease knock-in APP mice.
    Peters DG; Pollack AN; Cheng KC; Sun D; Saido T; Haaf MP; Yang QX; Connor JR; Meadowcroft MD
    Metallomics; 2018 Mar; 10(3):426-443. PubMed ID: 29424844
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Phage display and kinetic selection of antibodies that specifically inhibit amyloid self-replication.
    Munke A; Persson J; Weiffert T; De Genst E; Meisl G; Arosio P; Carnerup A; Dobson CM; Vendruscolo M; Knowles TPJ; Linse S
    Proc Natl Acad Sci U S A; 2017 Jun; 114(25):6444-6449. PubMed ID: 28584111
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Cytotoxic species in amyloid-associated diseases: Oligomers or mature fibrils.
    Siddiqi MK; Malik S; Majid N; Alam P; Khan RH
    Adv Protein Chem Struct Biol; 2019; 118():333-369. PubMed ID: 31928731
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Alzheimer's Disease Mechanisms and Emerging Roads to Novel Therapeutics.
    Sala Frigerio C; De Strooper B
    Annu Rev Neurosci; 2016 Jul; 39():57-79. PubMed ID: 27050320
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Abeta conformational change is central to Alzheimer's disease.
    Holtzman DM
    Neurobiol Aging; 2002; 23(6):1085-8. PubMed ID: 12470806
    [No Abstract]   [Full Text] [Related]  

  • 92. Cross-seeding and cross-competition in mouse apolipoprotein A-II amyloid fibrils and protein A amyloid fibrils.
    Yan J; Fu X; Ge F; Zhang B; Yao J; Zhang H; Qian J; Tomozawa H; Naiki H; Sawashita J; Mori M; Higuchi K
    Am J Pathol; 2007 Jul; 171(1):172-80. PubMed ID: 17591964
    [TBL] [Abstract][Full Text] [Related]  

  • 93. An age-related axon terminal pathology around the first olfactory relay that involves amyloidogenic protein overexpression without plaque formation.
    Cai Y; Xue ZQ; Zhang XM; Li MB; Wang H; Luo XG; Cai H; Yan XX
    Neuroscience; 2012 Jul; 215():160-73. PubMed ID: 22542680
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Implications of Metal Binding and Asparagine Deamidation for Amyloid Formation.
    Sadakane Y; Kawahara M
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30126231
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Transgenic animals in Alzheimer's disease research.
    Sturchler-Pierrat C; Sommer B
    Rev Neurosci; 1999; 10(1):15-24. PubMed ID: 10356989
    [TBL] [Abstract][Full Text] [Related]  

  • 96. New Insights into the Spontaneous Human Alzheimer's Disease-Like Model Octodon degus: Unraveling Amyloid-β Peptide Aggregation and Age-Related Amyloid Pathology.
    Cisternas P; Zolezzi JM; Lindsay C; Rivera DS; Martinez A; Bozinovic F; Inestrosa NC
    J Alzheimers Dis; 2018; 66(3):1145-1163. PubMed ID: 30412496
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The relationship between iron dyshomeostasis and amyloidogenesis in Alzheimer's disease: Two sides of the same coin.
    Peters DG; Connor JR; Meadowcroft MD
    Neurobiol Dis; 2015 Sep; 81():49-65. PubMed ID: 26303889
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Assessment of Intracellular Amyloid Formation in Fixed and Live Bacteria Using Fluorescence Microscopy.
    Marín J; Aguilera P; Lagos R; Marcoleta A
    Methods Mol Biol; 2022; 2538():261-273. PubMed ID: 35951305
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Small heat shock protein HspB8: its distribution in Alzheimer's disease brains and its inhibition of amyloid-beta protein aggregation and cerebrovascular amyloid-beta toxicity.
    Wilhelmus MM; Boelens WC; Otte-Höller I; Kamps B; Kusters B; Maat-Schieman ML; de Waal RM; Verbeek MM
    Acta Neuropathol; 2006 Feb; 111(2):139-49. PubMed ID: 16485107
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Alpha-synuclein: its biological function and role in neurodegenerative diseases.
    Kaplan B; Ratner V; Haas E
    J Mol Neurosci; 2003 Apr; 20(2):83-92. PubMed ID: 12794302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.