BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31430590)

  • 1. Using a deep neural network for four-dimensional CT artifact reduction in image-guided radiotherapy.
    Mori S; Hirai R; Sakata Y
    Phys Med; 2019 Sep; 65():67-75. PubMed ID: 31430590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid estimation of 4DCT motion-artifact severity based on 1D breathing-surrogate periodicity.
    Li G; Caraveo M; Wei J; Rimner A; Wu AJ; Goodman KA; Yorke E
    Med Phys; 2014 Nov; 41(11):111717. PubMed ID: 25370631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulated four-dimensional CT for markerless tumor tracking using a deep learning network with multi-task learning.
    Mori S; Hirai R; Sakata Y
    Phys Med; 2020 Dec; 80():151-158. PubMed ID: 33189045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated identification and reduction of artifacts in cine four-dimensional computed tomography (4DCT) images using respiratory motion model.
    Li M; Castillo SJ; Castillo R; Castillo E; Guerrero T; Xiao L; Zheng X
    Int J Comput Assist Radiol Surg; 2017 Sep; 12(9):1521-1532. PubMed ID: 28197760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of irregular breathing patterns on internal target volumes in four-dimensional CT and cone-beam CT images in the context of stereotactic lung radiotherapy.
    Clements N; Kron T; Franich R; Dunn L; Roxby P; Aarons Y; Chesson B; Siva S; Duplan D; Ball D
    Med Phys; 2013 Feb; 40(2):021904. PubMed ID: 23387752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal artifact reduction on cervical CT images by deep residual learning.
    Huang X; Wang J; Tang F; Zhong T; Zhang Y
    Biomed Eng Online; 2018 Nov; 17(1):175. PubMed ID: 30482231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic volume vs respiratory correlated 4DCT for motion assessment in radiation therapy simulation.
    Coolens C; Bracken J; Driscoll B; Hope A; Jaffray D
    Med Phys; 2012 May; 39(5):2669-81. PubMed ID: 22559637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of respiratory motion on CT image volume definition.
    Rodríguez-Romero R; Castro-Tejero P
    Med Phys; 2014 Apr; 41(4):041701. PubMed ID: 24694121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geodesic density regression for correcting 4DCT pulmonary respiratory motion artifacts.
    Shao W; Pan Y; Durumeric OC; Reinhardt JM; Bayouth JE; Rusu M; Christensen GE
    Med Image Anal; 2021 Aug; 72():102140. PubMed ID: 34214957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep convolutional-neural-network-based metal artifact reduction for CT-guided interventional oncology procedures (MARIO).
    Cao W; Parvinian A; Adamo D; Welch B; Callstrom M; Ren L; Missert A; Favazza CP
    Med Phys; 2024 Jun; 51(6):4231-4242. PubMed ID: 38353644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal artifact reduction for practical dental computed tomography by improving interpolation-based reconstruction with deep learning.
    Liang K; Zhang L; Yang H; Yang Y; Chen Z; Xing Y
    Med Phys; 2019 Dec; 46(12):e823-e834. PubMed ID: 31811792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical evaluations of an amplitude-based binning algorithm for 4DCT reconstruction in radiation therapy.
    Li H; Noel C; Garcia-Ramirez J; Low D; Bradley J; Robinson C; Mutic S; Parikh P
    Med Phys; 2012 Feb; 39(2):922-32. PubMed ID: 22320802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dosimetric impact of 4DCT artifact in carbon-ion scanning beam treatment: Worst case analysis in lung and liver treatments.
    Mori S; Kumagai M; Karube M; Yamamoto N
    Phys Med; 2016 Jun; 32(6):787-94. PubMed ID: 27184551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regression model-based real-time markerless tumor tracking with fluoroscopic images for hepatocellular carcinoma.
    Hirai R; Sakata Y; Tanizawa A; Mori S
    Phys Med; 2020 Feb; 70():196-205. PubMed ID: 32045869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing geometric accuracy of four-dimensional CT scans acquired using the wall- and couch-mounted Varian® Real-time Position Management™ camera systems.
    O'Connell BF; Irvine DM; Cole AJ; Hanna GG; McGarry CK
    Br J Radiol; 2015 Feb; 88(1046):20140624. PubMed ID: 25470359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of Deep Learning-Based Noise and Artifact Reduction in Coronal Reformation of Contrast-Enhanced Chest Computed Tomography.
    Kang EJ; Park HS; Jeon K; Lee JW; Lim JK
    J Comput Assist Tomogr; 2022 Jul-Aug 01; 46(4):593-603. PubMed ID: 35617647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning-based conditional inpainting for restoration of artifact-affected 4D CT images.
    Madesta F; Sentker T; Gauer T; Werner R
    Med Phys; 2024 May; 51(5):3437-3454. PubMed ID: 38055336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling respiratory motion for reducing motion artifacts in 4D CT images.
    Zhang Y; Yang J; Zhang L; Court LE; Balter PA; Dong L
    Med Phys; 2013 Apr; 40(4):041716. PubMed ID: 23556886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of a novel exponential weighted 4DCT reconstruction algorithm.
    Morris ED; Kim JP; Klahr P; Glide-Hurst CK
    J Appl Clin Med Phys; 2018 Nov; 19(6):217-225. PubMed ID: 30207053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-based target decomposition for markerless lung tumor tracking in radiotherapy.
    Fu Y; Zhang P; Fan Q; Cai W; Pham H; Rimner A; Cuaron J; Cervino L; Moran JM; Li T; Li X
    Med Phys; 2024 Jun; 51(6):4271-4282. PubMed ID: 38507259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.