These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31430590)

  • 21. Evaluation of potential internal target volume of liver tumors using cine-MRI.
    Akino Y; Oh RJ; Masai N; Shiomi H; Inoue T
    Med Phys; 2014 Nov; 41(11):111704. PubMed ID: 25370618
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low-dose 4DCT reconstruction via temporal nonlocal means.
    Tian Z; Jia X; Dong B; Lou Y; Jiang SB
    Med Phys; 2011 Mar; 38(3):1359-65. PubMed ID: 21520846
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A multiple points method for 4D CT image sorting.
    Gianoli C; Riboldi M; Spadea MF; Travaini LL; Ferrari M; Mei R; Orecchia R; Baroni G
    Med Phys; 2011 Feb; 38(2):656-67. PubMed ID: 21452703
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Four-dimensional computed tomography (4DCT): A review of the current status and applications.
    Kwong Y; Mel AO; Wheeler G; Troupis JM
    J Med Imaging Radiat Oncol; 2015 Oct; 59(5):545-54. PubMed ID: 26041442
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A semi-supervised learning method of latent features based on convolutional neural networks for CT metal artifact reduction.
    Shi Z; Wang N; Kong F; Cao H; Cao Q
    Med Phys; 2022 Jun; 49(6):3845-3859. PubMed ID: 35322430
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a deep learning-based patient-specific target contour prediction model for markerless tumor positioning.
    Zhou D; Nakamura M; Mukumoto N; Yoshimura M; Mizowaki T
    Med Phys; 2022 Mar; 49(3):1382-1390. PubMed ID: 35026057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Four-dimensional computed tomography: image formation and clinical protocol.
    Rietzel E; Pan T; Chen GT
    Med Phys; 2005 Apr; 32(4):874-89. PubMed ID: 15895570
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Real-time tumor tracking using fluoroscopic imaging with deep neural network analysis.
    Hirai R; Sakata Y; Tanizawa A; Mori S
    Phys Med; 2019 Mar; 59():22-29. PubMed ID: 30928062
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A deep learning method for eliminating head motion artifacts in computed tomography.
    Su B; Wen Y; Liu Y; Liao S; Fu J; Quan G; Li Z
    Med Phys; 2022 Jan; 49(1):411-419. PubMed ID: 34786714
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Few-shot learning for deformable image registration in 4DCT images.
    Chi W; Xiang Z; Guo F
    Br J Radiol; 2022 Jan; 95(1129):20210819. PubMed ID: 34662242
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new respiratory monitor system for four-dimensional computed tomography by measuring the pressure change on the back of body.
    Zhang X; Tang J; Sharp GC; Xiao L; Xu S; Lu HM
    Br J Radiol; 2020 Apr; 93(1108):20190303. PubMed ID: 31912746
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lung-CRNet: A convolutional recurrent neural network for lung 4DCT image registration.
    Lu J; Jin R; Song E; Ma G; Wang M
    Med Phys; 2021 Dec; 48(12):7900-7912. PubMed ID: 34726267
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A deep learning method for producing ventilation images from 4DCT: First comparison with technegas SPECT ventilation.
    Liu Z; Miao J; Huang P; Wang W; Wang X; Zhai Y; Wang J; Zhou Z; Bi N; Tian Y; Dai J
    Med Phys; 2020 Mar; 47(3):1249-1257. PubMed ID: 31883382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel amplitude binning strategy to handle irregular breathing during 4DMRI acquisition: improved imaging for radiotherapy purposes.
    van Kesteren Z; van der Horst A; Gurney-Champion OJ; Bones I; Tekelenburg D; Alderliesten T; van Tienhoven G; Klaassen R; van Laarhoven HWM; Bel A
    Radiat Oncol; 2019 May; 14(1):80. PubMed ID: 31088490
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An additional tilted-scan-based CT metal-artifact-reduction method for radiation therapy planning.
    Kim C; Pua R; Lee CH; Choi DI; Cho B; Lee SW; Cho S; Kwak J
    J Appl Clin Med Phys; 2019 Jan; 20(1):237-249. PubMed ID: 30597725
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel CT acquisition and analysis technique for breathing motion modeling.
    Low DA; White BM; Lee PP; Thomas DH; Gaudio S; Jani SS; Wu X; Lamb JM
    Phys Med Biol; 2013 Jun; 58(11):L31-6. PubMed ID: 23640212
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks.
    Hu Z; Jiang C; Sun F; Zhang Q; Ge Y; Yang Y; Liu X; Zheng H; Liang D
    Med Phys; 2019 Apr; 46(4):1686-1696. PubMed ID: 30697765
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unsupervised learning of a deep neural network for metal artifact correction using dual-polarity readout gradients.
    Kwon K; Kim D; Kim B; Park H
    Magn Reson Med; 2020 Jan; 83(1):124-138. PubMed ID: 31403219
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phase2Phase: Respiratory Motion-Resolved Reconstruction of Free-Breathing Magnetic Resonance Imaging Using Deep Learning Without a Ground Truth for Improved Liver Imaging.
    Eldeniz C; Gan W; Chen S; Fraum TJ; Ludwig DR; Yan Y; Liu J; Vahle T; Krishnamurthy U; Kamilov US; An H
    Invest Radiol; 2021 Dec; 56(12):809-819. PubMed ID: 34038064
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative analysis of respiration-induced motion of each liver segment with helical computed tomography and 4-dimensional computed tomography.
    Tsai YL; Wu CJ; Shaw S; Yu PC; Nien HH; Lui LT
    Radiat Oncol; 2018 Apr; 13(1):59. PubMed ID: 29609631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.