BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 31430636)

  • 21. Synthesis and characterization of magnetoliposomes for MRI contrast enhancement.
    Faria MR; Cruz MM; Gonçalves MC; Carvalho A; Feio G; Martins MB
    Int J Pharm; 2013 Mar; 446(1-2):183-90. PubMed ID: 23422275
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoformulation Design Including MamC-Mediated Biomimetic Nanoparticles Allows the Simultaneous Application of Targeted Drug Delivery and Magnetic Hyperthermia.
    Jabalera Y; Oltolina F; Peigneux A; Sola-Leyva A; Carrasco-Jiménez MP; Prat M; Jimenez-Lopez C; Iglesias GR
    Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32824256
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magnetic field-assisted selective delivery of doxorubicin to cancer cells using magnetoliposomes as drug nanocarriers.
    Szuplewska A; Rękorajska Joniec A; Pocztańska E; Krysiński P; Dybko A; Chudy M
    Nanotechnology; 2019 Aug; 30(31):315101. PubMed ID: 30991371
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative evaluation of magnetic hyperthermia performance and biocompatibility of magnetite and novel Fe-doped hardystonite nanoparticles for potential bone cancer therapy.
    Farzin A; Hassan S; Emadi R; Etesami SA; Ai J
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():930-938. PubMed ID: 30813100
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Size control of in vitro synthesized magnetite crystals by the MamC protein of Magnetococcus marinus strain MC-1.
    Valverde-Tercedor C; Montalbán-López M; Perez-Gonzalez T; Sanchez-Quesada MS; Prozorov T; Pineda-Molina E; Fernandez-Vivas MA; Rodriguez-Navarro AB; Trubitsyn D; Bazylinski DA; Jimenez-Lopez C
    Appl Microbiol Biotechnol; 2015 Jun; 99(12):5109-21. PubMed ID: 25874532
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Magnetic Nanoparticles: A Review on Synthesis, Characterization, Functionalization, and Biomedical Applications.
    Rezaei B; Yari P; Sanders SM; Wang H; Chugh VK; Liang S; Mostufa S; Xu K; Wang JP; Gómez-Pastora J; Wu K
    Small; 2024 Feb; 20(5):e2304848. PubMed ID: 37732364
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro anti-cancer efficacy of multi-functionalized magnetite nanoparticles combining alternating magnetic hyperthermia in glioblastoma cancer cells.
    Minaei SE; Khoei S; Khoee S; Vafashoar F; Mahabadi VP
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():575-587. PubMed ID: 31029351
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microstructure study of liposomes decorated by hydrophobic magnetic nanoparticles.
    Qiu D; An X; Chen Z; Ma X
    Chem Phys Lipids; 2012 Jul; 165(5):563-70. PubMed ID: 22728111
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermosensitive Betulinic Acid-Loaded Magnetoliposomes: A Promising Antitumor Potential for Highly Aggressive Human Breast Adenocarcinoma Cells Under Hyperthermic Conditions.
    Farcas CG; Dehelean C; Pinzaru IA; Mioc M; Socoliuc V; Moaca EA; Avram S; Ghiulai R; Coricovac D; Pavel I; Alla PK; Cretu OM; Soica C; Loghin F
    Int J Nanomedicine; 2020; 15():8175-8200. PubMed ID: 33122905
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications.
    Martinez-Boubeta C; Simeonidis K; Makridis A; Angelakeris M; Iglesias O; Guardia P; Cabot A; Yedra L; Estradé S; Peiró F; Saghi Z; Midgley PA; Conde-Leborán I; Serantes D; Baldomir D
    Sci Rep; 2013; 3():1652. PubMed ID: 23576006
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nano-engineering of 5-fluorouracil-loaded magnetoliposomes for combined hyperthermia and chemotherapy against colon cancer.
    Clares B; Biedma-Ortiz RA; Sáez-Fernández E; Prados JC; Melguizo C; Cabeza L; Ortiz R; Arias JL
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):329-38. PubMed ID: 23485475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light/magnetic hyperthermia triggered drug released from multi-functional thermo-sensitive magnetoliposomes for precise cancer synergetic theranostics.
    Guo Y; Zhang Y; Ma J; Li Q; Li Y; Zhou X; Zhao D; Song H; Chen Q; Zhu X
    J Control Release; 2018 Feb; 272():145-158. PubMed ID: 28442407
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell damage produced by magnetic fluid hyperthermia on microglial BV2 cells.
    Calatayud MP; Soler E; Torres TE; Campos-Gonzalez E; Junquera C; Ibarra MR; Goya GF
    Sci Rep; 2017 Aug; 7(1):8627. PubMed ID: 28819156
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polyethylene glycol-coated porous magnetic nanoparticles for targeted delivery of chemotherapeutics under magnetic hyperthermia condition.
    Dabbagh A; Hedayatnasab Z; Karimian H; Sarraf M; Yeong CH; Madaah Hosseini HR; Abu Kasim NH; Wong TW; Rahman NA
    Int J Hyperthermia; 2019; 36(1):104-114. PubMed ID: 30428737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnetic nanoparticles for amalgamation of magnetic hyperthermia and chemotherapy: An approach towards enhanced attenuation of tumor.
    Singh A; Jain S; Sahoo SK
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110695. PubMed ID: 32204010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reactive oxygen species (ROS) production in HepG2 cancer cell line through the application of localized alternating magnetic field.
    Sola-Leyva A; Jabalera Y; Chico-Lozano MA; Carrasco-Jiménez MP; Iglesias GR; Jimenez-Lopez C
    J Mater Chem B; 2020 Sep; 8(34):7667-7676. PubMed ID: 32705099
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios.
    Gavilán H; Simeonidis K; Myrovali E; Mazarío E; Chubykalo-Fesenko O; Chantrell R; Balcells L; Angelakeris M; Morales MP; Serantes D
    Nanoscale; 2021 Oct; 13(37):15631-15646. PubMed ID: 34596185
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.
    Céspedes E; Byrne JM; Farrow N; Moise S; Coker VS; Bencsik M; Lloyd JR; Telling ND
    Nanoscale; 2014 Nov; 6(21):12958-70. PubMed ID: 25232657
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomimetic magnetic silk scaffolds.
    Samal SK; Dash M; Shelyakova T; Declercq HA; Uhlarz M; Bañobre-López M; Dubruel P; Cornelissen M; Herrmannsdörfer T; Rivas J; Padeletti G; De Smedt S; Braeckmans K; Kaplan DL; Dediu VA
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6282-92. PubMed ID: 25734962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation of Folic Acid-Targeted Temperature-Sensitive Magnetoliposomes and their Antitumor Effects In Vitro and In Vivo.
    Wang X; Yang R; Yuan C; An Y; Tang Q; Chen D
    Target Oncol; 2018 Aug; 13(4):481-494. PubMed ID: 29992403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.