These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31430669)

  • 1. Cascade processing of softwood bark with hot water extraction, pyrolysis and anaerobic digestion.
    Rasi S; Kilpeläinen P; Rasa K; Korpinen R; Raitanen JE; Vainio M; Kitunen V; Pulkkinen H; Jyske T
    Bioresour Technol; 2019 Nov; 292():121893. PubMed ID: 31430669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of anaerobic digestion as a treatment for the aqueous pyrolysis condensate (APC) of birch bark.
    Wen C; Moreira CM; Rehmann L; Berruti F
    Bioresour Technol; 2020 Jul; 307():123199. PubMed ID: 32220821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hot water extraction and steam explosion as pretreatments for ethanol production from spruce bark.
    Kemppainen K; Inkinen J; Uusitalo J; Nakari-Setälä T; Siika-aho M
    Bioresour Technol; 2012 Aug; 117():131-9. PubMed ID: 22613888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of condensed tannins and carbohydrates in hot water bark extracts of European softwood species.
    Bianchi S; Kroslakova I; Janzon R; Mayer I; Saake B; Pichelin F
    Phytochemistry; 2015 Dec; 120():53-61. PubMed ID: 26547588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquefaction of lignocellulosic biomass for methane production: A review.
    Ghimire N; Bakke R; Bergland WH
    Bioresour Technol; 2021 Jul; 332():125068. PubMed ID: 33849751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass.
    Fabbri D; Torri C
    Curr Opin Biotechnol; 2016 Apr; 38():167-73. PubMed ID: 26948108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Industrial symbiosis of anaerobic digestion and pyrolysis: Performances and agricultural interest of coupling biochar and liquid digestate.
    Tayibi S; Monlau F; Marias F; Thevenin N; Jimenez R; Oukarroum A; Alboulkas A; Zeroual Y; Barakat A
    Sci Total Environ; 2021 Nov; 793():148461. PubMed ID: 34182451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochar enables anaerobic digestion of aqueous phase from intermediate pyrolysis of biomass.
    Torri C; Fabbri D
    Bioresour Technol; 2014 Nov; 172():335-341. PubMed ID: 25277261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of integrated anaerobic digestion and pyrolysis for biogas, biochar and bio-oil production from the perspective of energy flow.
    Yang J; Tang S; Song B; Jiang Y; Zhu W; Zhou W; Yang G
    Sci Total Environ; 2023 May; 872():162154. PubMed ID: 36804988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling anaerobic digestion and pyrolysis processes for maximizing energy recovery and soil preservation according to the circular economy concept.
    Tayibi S; Monlau F; Marias F; Cazaudehore G; Fayoud NE; Oukarroum A; Zeroual Y; Barakat A
    J Environ Manage; 2021 Feb; 279():111632. PubMed ID: 33309111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive evaluation of gradient controlled anaerobic digestion and pyrolysis integration processes: A case study of Sargassum treatment.
    Wang Z; Li J; Yu F; Yan B; Chen G
    Bioresour Technol; 2022 Feb; 345():126496. PubMed ID: 34883196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A kinetic study of roadside grass pyrolysis and digestate from anaerobic mono-digestion.
    Bedoić R; Bulatović VO; Čuček L; Ćosić B; Špehar A; Pukšec T; Duić N
    Bioresour Technol; 2019 Nov; 292():121935. PubMed ID: 31401359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving bio-oil properties through the fast co-pyrolysis of lignocellulosic biomass and waste tyres.
    Alvarez J; Amutio M; Lopez G; Santamaria L; Bilbao J; Olazar M
    Waste Manag; 2019 Feb; 85():385-395. PubMed ID: 30803593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge.
    Wei S; Zhu M; Fan X; Song J; Peng P; Li K; Jia W; Song H
    Chemosphere; 2019 Mar; 218():624-631. PubMed ID: 30502701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of pyrolysis and anaerobic digestion--use of aqueous liquor from digestate pyrolysis for biogas production.
    Hübner T; Mumme J
    Bioresour Technol; 2015 May; 183():86-92. PubMed ID: 25725406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comprehensive Characterization of Pyrolysis Oil from Softwood Barks.
    Ben H; Wu F; Wu Z; Han G; Jiang W; Ragauskas AJ
    Polymers (Basel); 2019 Aug; 11(9):. PubMed ID: 31450759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Achievements of biochar application for enhanced anaerobic digestion: A review.
    Pan J; Ma J; Zhai L; Luo T; Mei Z; Liu H
    Bioresour Technol; 2019 Nov; 292():122058. PubMed ID: 31488335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of self-purging pyrolysis on yield of biochar from maize cobs, husks and leaves.
    Intani K; Latif S; Kabir AK; Müller J
    Bioresour Technol; 2016 Oct; 218():541-51. PubMed ID: 27395002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-anaerobic digestion thermal hydrolysis of sewage sludge and food waste: Effect on methane yields, dewaterability and solids reduction.
    Svensson K; Kjørlaug O; Higgins MJ; Linjordet R; Horn SJ
    Water Res; 2018 Apr; 132():158-166. PubMed ID: 29328986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality.
    Jassal RS; Johnson MS; Molodovskaya M; Black TA; Jollymore A; Sveinson K
    J Environ Manage; 2015 Apr; 152():140-4. PubMed ID: 25621388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.