These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 31430697)
1. DARPin based GMR Biosensor for the detection of ESAT-6 Tuberculosis Protein. Gupta S; Kakkar V Tuberculosis (Edinb); 2019 Sep; 118():101852. PubMed ID: 31430697 [TBL] [Abstract][Full Text] [Related]
2. Point-of-care detection of tuberculosis using magnetoresistive biosensing chip. Gupta S; Bhatter P; Kakkar V Tuberculosis (Edinb); 2021 Mar; 127():102055. PubMed ID: 33561629 [TBL] [Abstract][Full Text] [Related]
3. Detection of ESAT-6 by a label free miniature immuno-electrochemical biosensor as a diagnostic tool for tuberculosis. Diouani MF; Ouerghi O; Refai A; Belgacem K; Tlili C; Laouini D; Essafi M Mater Sci Eng C Mater Biol Appl; 2017 May; 74():465-470. PubMed ID: 28254318 [TBL] [Abstract][Full Text] [Related]
4. [Evolution of IGRA researches]. Ariga H; Harada N Kekkaku; 2008 Sep; 83(9):641-52. PubMed ID: 18979999 [TBL] [Abstract][Full Text] [Related]
6. Aptamer based voltammetric biosensor for Mycobacterium tuberculosis antigen ESAT-6 using a nanohybrid material composed of reduced graphene oxide and a metal-organic framework. Li L; Yuan Y; Chen Y; Zhang P; Bai Y; Bai L Mikrochim Acta; 2018 Jul; 185(8):379. PubMed ID: 30019137 [TBL] [Abstract][Full Text] [Related]
7. Immuno Nanosensor for the Ultrasensitive Naked Eye Detection of Tuberculosis. Mohd Bakhori N; Yusof NA; Abdullah J; Wasoh H; Md Noor SS; Ahmad Raston NH; Mohammad F Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29899214 [TBL] [Abstract][Full Text] [Related]
8. Dual-aptamer-based voltammetric biosensor for the Mycobacterium tuberculosis antigen MPT64 by using a gold electrode modified with a peroxidase loaded composite consisting of gold nanoparticles and a Zr(IV)/terephthalate metal-organic framework. Li N; Huang X; Sun D; Yu W; Tan W; Luo Z; Chen Z Mikrochim Acta; 2018 Nov; 185(12):543. PubMed ID: 30421038 [TBL] [Abstract][Full Text] [Related]
9. Generation of Mycobacterium tuberculosis-specific recombinant antigens and evaluation of the clinical value of antibody detection for serological diagnosis of pulmonary tuberculosis. Zhang X; Su Z; Zhang X; Hu C; Yu J; Gao Q; Wang H Int J Mol Med; 2013 Mar; 31(3):751-7. PubMed ID: 23338746 [TBL] [Abstract][Full Text] [Related]
10. [Expression of Mycobacterium tuberculosis early secretory antigenic target-6 protein and its application in detection of Mycobacterium tuberculosis antigen-specific interferon-gamma response]. Zhang J; Liu WL; Zhou BP; Zhang MX; Yang QT; Zhu XY; Lu J; Deng QY; Chen XC Zhonghua Jie He He Hu Xi Za Zhi; 2009 Jan; 32(1):55-9. PubMed ID: 19484964 [TBL] [Abstract][Full Text] [Related]
11. Ultrasensitive electrochemical detection of Mycobacterium tuberculosis IS6110 fragment using gold nanoparticles decorated fullerene nanoparticles/nitrogen-doped graphene nanosheet as signal tags. Bai L; Chen Y; Liu X; Zhou J; Cao J; Hou L; Guo S Anal Chim Acta; 2019 Nov; 1080():75-83. PubMed ID: 31409477 [TBL] [Abstract][Full Text] [Related]
12. ESAT-6 and CFP-10 can be combined to reduce the cost of testing for Mycobacterium tuberculosis infection, but CFP-10 responses associate with active disease. Fox A; Jeffries DJ; Hill PC; Hammond AS; Lugos MD; Jackson-Sillah D; Donkor SA; Owiafe PK; McAdam KP; Brookes RH Trans R Soc Trop Med Hyg; 2007 Jul; 101(7):691-8. PubMed ID: 17434194 [TBL] [Abstract][Full Text] [Related]
13. Diagnostics of Tuberculosis with Single-Walled Carbon Nanotube-Based Field-Effect Transistors. Wang J; Shao W; Liu Z; Kesavan G; Zeng Z; Shurin MR; Star A ACS Sens; 2024 Apr; 9(4):1957-1966. PubMed ID: 38484361 [TBL] [Abstract][Full Text] [Related]
14. [Characteristics of a diagnostic method for tuberculosis infection based on whole blood interferon-gamma assay]. Harada N Kekkaku; 2006 Nov; 81(11):681-6. PubMed ID: 17154047 [TBL] [Abstract][Full Text] [Related]
15. Novel monoclonal antibodies to ESAT-6 and CFP-10 antigens for ELISA-based diagnosis of pleural tuberculosis. Feng TT; Shou CM; Shen L; Qian Y; Wu ZG; Fan J; Zhang YZ; Tang YW; Wu NP; Lu HZ; Yao HP Int J Tuberc Lung Dis; 2011 Jun; 15(6):804-10. PubMed ID: 21575303 [TBL] [Abstract][Full Text] [Related]
16. Voltammetric immunoassay for Mycobacterium tuberculosis secretory protein MPT64 based on a synergistic amplification strategy using rolling circle amplification and a gold electrode modified with graphene oxide, Fe Gou D; Xie G; Li Y; Zhang X; Chen H Mikrochim Acta; 2018 Aug; 185(9):436. PubMed ID: 30167897 [TBL] [Abstract][Full Text] [Related]
17. Early Diagnosis of Tuberculosis-Associated IgA Nephropathy with ESAT-6. Zhao N; Sun JY; Xu HP; Sun FY Tohoku J Exp Med; 2017 Apr; 241(4):271-279. PubMed ID: 28392505 [TBL] [Abstract][Full Text] [Related]
18. Recent technological advancements in tuberculosis diagnostics - A review. Gupta S; Kakkar V Biosens Bioelectron; 2018 Sep; 115():14-29. PubMed ID: 29783081 [TBL] [Abstract][Full Text] [Related]
19. Trends in Diagnosis for Active Tuberculosis Using Nanomaterials. Tu Phan LM; Tufa LT; Kim HJ; Lee J; Park TJ Curr Med Chem; 2019; 26(11):1946-1959. PubMed ID: 30207212 [TBL] [Abstract][Full Text] [Related]
20. Detection and Quantification of HspX Antigen in Sputum Samples Using Plasmonic Biosensing: Toward a Real Point-of-Care (POC) for Tuberculosis Diagnosis. Peláez EC; Estevez MC; Mongui A; Menéndez MC; Toro C; Herrera-Sandoval OL; Robledo J; García MJ; Portillo PD; Lechuga LM ACS Infect Dis; 2020 May; 6(5):1110-1120. PubMed ID: 32233503 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]