BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 31430730)

  • 1. Bio-inspired robotic dog paddling: kinematic and hydro-dynamic analysis.
    Li Y; Fish F; Chen Y; Ren T; Zhou J
    Bioinspir Biomim; 2019 Sep; 14(6):066008. PubMed ID: 31430730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biologically inspired swimming robotic frog based on pneumatic soft actuators.
    Jizhuang F; Qilong D; Qingguo Y; Yi W; Jiaming Q; Yanhe Z
    Bioinspir Biomim; 2020 May; 15(4):046006. PubMed ID: 32209752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The "dog paddle": Stereotypic swimming gait pattern in different dog breeds.
    Fish FE; DiNenno NK; Trail J
    Anat Rec (Hoboken); 2021 Jan; 304(1):90-100. PubMed ID: 32243718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Submerged swimming of the great cormorant Phalacrocorax carbo sinensis is a variant of the burst-and-glide gait.
    Ribak G; Weihs D; Arad Z
    J Exp Biol; 2005 Oct; 208(Pt 20):3835-49. PubMed ID: 16215212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variable stiffness morphing limb for amphibious legged robots inspired by chelonian environmental adaptations.
    Baines R; Freeman S; Fish F; Kramer-Bottiglio R
    Bioinspir Biomim; 2020 Feb; 15(2):025002. PubMed ID: 31914424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a bio-inspired transformable robotic fin.
    Yang Y; Xia Y; Qin F; Xu M; Li W; Zhang S
    Bioinspir Biomim; 2016 Aug; 11(5):056010. PubMed ID: 27580003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trout-like multifunctional piezoelectric robotic fish and energy harvester.
    Tan D; Wang YC; Kohtanen E; Erturk A
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33984855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of underwater legged locomotion: modeling and experiments on an octopus-inspired robot.
    Calisti M; Corucci F; Arienti A; Laschi C
    Bioinspir Biomim; 2015 Jul; 10(4):046012. PubMed ID: 26226238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.
    Cen L; Erturk A
    Bioinspir Biomim; 2013 Mar; 8(1):016006. PubMed ID: 23348365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Method to Develop Legs for Underwater Robots: From Multibody Dynamics with Experimental Data to Mechatronic Implementation.
    Pérez Bayas MÁ; Cely J; Sintov A; García Cena CE; Saltaren R
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and analysis of bio-syncretic micro-swimmers for cardiomyocyte-based actuation.
    Zhang C; Wang J; Wang W; Xi N; Wang Y; Liu L
    Bioinspir Biomim; 2016 Aug; 11(5):056006. PubMed ID: 27545346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A numerical investigation of flow around octopus-like arms: near-wake vortex patterns and force development.
    Kazakidi A; Vavourakis V; Tsakiris DP; Ekaterinaris JA
    Comput Methods Biomech Biomed Engin; 2015; 18(12):1321-39. PubMed ID: 24730546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soft Biomimetic Fish Robot Made of Dielectric Elastomer Actuators.
    Shintake J; Cacucciolo V; Shea H; Floreano D
    Soft Robot; 2018 Aug; 5(4):466-474. PubMed ID: 29957131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hydrodynamics of swimming at intermediate Reynolds numbers in the water boatman (Corixidae).
    Ngo V; McHenry MJ
    J Exp Biol; 2014 Aug; 217(Pt 15):2740-51. PubMed ID: 24855668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CFD based parameter tuning for motion control of robotic fish.
    Tian R; Li L; Wang W; Chang X; Ravi S; Xie G
    Bioinspir Biomim; 2020 Feb; 15(2):026008. PubMed ID: 31935704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How do cormorants counter buoyancy during submerged swimming?
    Ribak G; Weihs D; Arad Z
    J Exp Biol; 2004 May; 207(Pt 12):2101-14. PubMed ID: 15143144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bio-inspired robotic fish utilizes the snap-through buckling of its spine to generate accelerations of more than 20g.
    Currier TM; Lheron S; Modarres-Sadeghi Y
    Bioinspir Biomim; 2020 Aug; 15(5):055006. PubMed ID: 32503011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unsteady hydrodynamic forces acting on a robotic hand and its flow field.
    Takagi H; Nakashima M; Ozaki T; Matsuuchi K
    J Biomech; 2013 Jul; 46(11):1825-32. PubMed ID: 23764175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A survey of bio-inspired compliant legged robot designs.
    Zhou X; Bi S
    Bioinspir Biomim; 2012 Dec; 7(4):041001. PubMed ID: 23151609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, Modeling, and Visual Learning-Based Control of Soft Robotic Fish Driven by Super-Coiled Polymers.
    Rajendran SK; Zhang F
    Front Robot AI; 2021; 8():809427. PubMed ID: 35309723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.