These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31430743)

  • 1. Volatile organic compound (VOC) emissions of CHO and T cells correlate to their expansion in bioreactors.
    McCartney MM; Yamaguchi MS; Bowles PA; Gratch YS; Iyer RK; Linderholm AL; Ebeler SE; Kenyon NJ; Schivo M; Harper RW; Goodwin P; Davis CE
    J Breath Res; 2019 Oct; 14(1):016002. PubMed ID: 31430743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-destructive egg breed separation using advanced VOC analytical techniques HSSE-GC-MS, PTR-TOF-MS, and SIFT-MS: Assessment of performance and systems' complementarity.
    Corion M; Portillo-Estrada M; Santos S; Lammertyn J; De Ketelaere B; Hertog M
    Food Res Int; 2024 Jan; 176():113802. PubMed ID: 38163682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Headspace sorptive extraction-gas chromatography-mass spectrometry method to measure volatile emissions from human airway cell cultures.
    Yamaguchi MS; McCartney MM; Linderholm AL; Ebeler SE; Schivo M; Davis CE
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jul; 1090():36-42. PubMed ID: 29783172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced online monitoring of cell culture off-gas using proton transfer reaction mass spectrometry.
    Schmidberger T; Gutmann R; Bayer K; Kronthaler J; Huber R
    Biotechnol Prog; 2014; 30(2):496-504. PubMed ID: 24376199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvements in single-use bioreactor film material composition leads to robust and reliable Chinese hamster ovary cell performance.
    Kelly PS; Dorival-García N; Paré S; Carillo S; Ta C; Alarcon Miguez A; Coleman O; Harper E; Shannon M; Henry M; Connolly L; Clynes M; Meleady P; Bones J; Barron N
    Biotechnol Prog; 2019 Jul; 35(4):e2824. PubMed ID: 31017345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid high-throughput characterisation, classification and selection of recombinant mammalian cell line phenotypes using intact cell MALDI-ToF mass spectrometry fingerprinting and PLS-DA modelling.
    Povey JF; O'Malley CJ; Root T; Martin EB; Montague GA; Feary M; Trim C; Lang DA; Alldread R; Racher AJ; Smales CM
    J Biotechnol; 2014 Aug; 184():84-93. PubMed ID: 24858576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying robust and reliable volatile organic compounds in human sebum for biomarker discovery.
    Zhang JD; Le MN; Hill KJ; Cooper AA; Stuetz RM; Donald WA
    Anal Chim Acta; 2022 Nov; 1233():340506. PubMed ID: 36283785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemometrics and in-line near infrared spectroscopic monitoring of a biopharmaceutical Chinese hamster ovary cell culture: prediction of multiple cultivation variables.
    Clavaud M; Roggo Y; Von Daeniken R; Liebler A; Schwabe JO
    Talanta; 2013 Jul; 111():28-38. PubMed ID: 23622522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of volatile organic compounds produced by bacteria using HS-SPME-GC-MS.
    Tait E; Perry JD; Stanforth SP; Dean JR
    J Chromatogr Sci; 2014 Apr; 52(4):363-73. PubMed ID: 23661670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a Headspace Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry Method to Study Volatile Organic Compounds (VOCs) Emitted by Lavender Roots.
    Stierlin É; Nicolè F; Fernandez X; Michel T
    Chem Biodivers; 2019 Aug; 16(8):e1900280. PubMed ID: 31211502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrimination of Three Panax Species Based on Differences in Volatile Organic Compounds Using a Static Headspace GC-MS-Based Metabolomics Approach.
    Chen XJ; Qiu JF; Wang YT; Wan JB
    Am J Chin Med; 2016; 44(3):663-76. PubMed ID: 27109159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GC-MS metabolomics-based approach for the identification of a potential VOC-biomarker panel in the urine of renal cell carcinoma patients.
    Monteiro M; Moreira N; Pinto J; Pires-Luís AS; Henrique R; Jerónimo C; Bastos ML; Gil AM; Carvalho M; Guedes de Pinho P
    J Cell Mol Med; 2017 Sep; 21(9):2092-2105. PubMed ID: 28378454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of volatile organic compounds from lung cancer patients and healthy controls-challenges and limitations of an observational study.
    Schallschmidt K; Becker R; Jung C; Bremser W; Walles T; Neudecker J; Leschber G; Frese S; Nehls I
    J Breath Res; 2016 Oct; 10(4):046007. PubMed ID: 27732569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smell of cells: Volatile profiling of stem- and non-stem cell proliferation.
    Bischoff AC; Oertel P; Sukul P; Rimmbach C; David R; Schubert J; Miekisch W
    J Breath Res; 2018 Mar; 12(2):026014. PubMed ID: 29231842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volatile organic compounds at swine facilities: a critical review.
    Ni JQ; Robarge WP; Xiao C; Heber AJ
    Chemosphere; 2012 Oct; 89(7):769-88. PubMed ID: 22682363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal desorption comprehensive two-dimensional gas chromatography coupled to variable-energy electron ionization time-of-flight mass spectrometry for monitoring subtle changes in volatile organic compound profiles of human blood.
    Dubois LM; Perrault KA; Stefanuto PH; Koschinski S; Edwards M; McGregor L; Focant JF
    J Chromatogr A; 2017 Jun; 1501():117-127. PubMed ID: 28473200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impacts on product quality attributes of monoclonal antibodies produced in CHO cell bioreactor cultures during intentional mycoplasma contamination events.
    Fratz-Berilla EJ; Angart P; Graham RJ; Powers DN; Mohammad A; Kohnhorst C; Faison T; Velugula-Yellela SR; Trunfio N; Agarabi C
    Biotechnol Bioeng; 2020 Sep; 117(9):2802-2815. PubMed ID: 32436993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Pseudomonas aeruginosa and Aspergillus fumigatus mono- and co-cultures based on volatile biomarker combinations.
    Neerincx AH; Geurts BP; Habets MFJ; Booij JA; van Loon J; Jansen JJ; Buydens LMC; van Ingen J; Mouton JW; Harren FJM; Wevers RA; Merkus PJFM; Cristescu SM; Kluijtmans LAJ
    J Breath Res; 2016 Jan; 10(1):016002. PubMed ID: 26824272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. δD and δ13C analyses of atmospheric volatile organic compounds by thermal desorption gas chromatography isotope ratio mass spectrometry.
    von Eckstaedt CV; Grice K; Ioppolo-Armanios M; Chidlow G; Jones M
    J Chromatogr A; 2011 Sep; 1218(37):6511-7. PubMed ID: 21807368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography-mass spectrometry.
    Boots AW; Smolinska A; van Berkel JJ; Fijten RR; Stobberingh EE; Boumans ML; Moonen EJ; Wouters EF; Dallinga JW; Van Schooten FJ
    J Breath Res; 2014 Jun; 8(2):027106. PubMed ID: 24737039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.