These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 31430750)
21. Learning effect and test-retest variability of pulsar perimetry. Salvetat ML; Zeppieri M; Parisi L; Johnson CA; Sampaolesi R; Brusini P J Glaucoma; 2013 Mar; 22(3):230-7. PubMed ID: 22027935 [TBL] [Abstract][Full Text] [Related]
22. Understanding the role of microperimetry in glaucoma. Scuderi L; Gattazzo I; de Paula A; Iodice CM; Di Tizio F; Perdicchi A Int Ophthalmol; 2022 Jul; 42(7):2289-2301. PubMed ID: 35094226 [TBL] [Abstract][Full Text] [Related]
23. Usefulness of frequency-doubling technology for perimetrically normal eyes of open-angle glaucoma patients with unilateral field loss. Fan X; Wu LL; Ma ZZ; Xiao GG; Liu F Ophthalmology; 2010 Aug; 117(8):1530-7, 1537.e1-2. PubMed ID: 20466428 [TBL] [Abstract][Full Text] [Related]
24. Detectability of glaucomatous changes using SAP, FDT, flicker perimetry, and OCT. Nomoto H; Matsumoto C; Takada S; Hashimoto S; Arimura E; Okuyama S; Shimomura Y J Glaucoma; 2009 Feb; 18(2):165-71. PubMed ID: 19225357 [TBL] [Abstract][Full Text] [Related]
25. Frequency-doubling perimetry: comparison with standard automated perimetry to detect glaucoma. Leeprechanon N; Giangiacomo A; Fontana H; Hoffman D; Caprioli J Am J Ophthalmol; 2007 Feb; 143(2):263-271. PubMed ID: 17178091 [TBL] [Abstract][Full Text] [Related]
26. Fast Visual Field Progression Is Associated with Depressive Symptoms in Patients with Glaucoma. Diniz-Filho A; Abe RY; Cho HJ; Baig S; Gracitelli CP; Medeiros FA Ophthalmology; 2016 Apr; 123(4):754-9. PubMed ID: 26920097 [TBL] [Abstract][Full Text] [Related]
27. Structure-Function Analysis of MP-3 Microperimetry versus Octopus Perimetry in Central Glaucomatous Visual Field Defects. Georgiev S; Palkovits S; Hirnschall N; Schlatter A; Leisser C; Findl O Ophthalmic Res; 2022; 65(4):437-445. PubMed ID: 35272298 [TBL] [Abstract][Full Text] [Related]
28. Comparing multifocal VEP and standard automated perimetry in high-risk ocular hypertension and early glaucoma. Fortune B; Demirel S; Zhang X; Hood DC; Patterson E; Jamil A; Mansberger SL; Cioffi GA; Johnson CA Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1173-80. PubMed ID: 17325161 [TBL] [Abstract][Full Text] [Related]
29. Diagnostic Consistency and Relation Between Optical Coherence Tomography and Standard Automated Perimetry in Primary Open-Angle Glaucoma. Toprak I; Yaylalı V; Yildirim C Semin Ophthalmol; 2017; 32(2):185-190. PubMed ID: 26146801 [TBL] [Abstract][Full Text] [Related]
30. Repeatability of Online Circular Contrast Perimetry Compared to Standard Automated Perimetry. Meyerov J; Chen Y; Busija L; Green C; Skalicky SE J Glaucoma; 2024 Jul; 33(7):505-515. PubMed ID: 38595156 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of the Retinal Nerve Fiber Layer Thickness, the Mean Deviation, and the Visual Field Index in Progressive Glaucoma. Banegas SA; Antón A; Morilla A; Bogado M; Ayala EM; Fernandez-Guardiola A; Moreno-Montañes J J Glaucoma; 2016 Mar; 25(3):e229-35. PubMed ID: 26020689 [TBL] [Abstract][Full Text] [Related]
32. Association of intraocular pressure-related factors and retinal vessel diameter with optic disc rim area in subjects with and without primary open angle glaucoma. Zhang Q; Jan C; Guo CY; Wang FH; Liang YB; Cao K; Zhang Z; Yang DY; Thomas R; Wang NL; Clin Exp Ophthalmol; 2018 May; 46(4):389-399. PubMed ID: 28858414 [TBL] [Abstract][Full Text] [Related]
33. Efficacy of SLO-Microperimetry and Humphrey for evaluating macular sensitivity changes in advanced glaucoma. Kulkarni SV; Coupland SG; Stitt DM; Hamilton J; Brownstein JJ; Damji KF Can J Ophthalmol; 2013 Oct; 48(5):406-12. PubMed ID: 24093188 [TBL] [Abstract][Full Text] [Related]
34. Detection of glaucoma progression by perimetry and optic disc photography at different stages of the disease: results from the Early Manifest Glaucoma Trial. Öhnell H; Heijl A; Anderson H; Bengtsson B Acta Ophthalmol; 2017 May; 95(3):281-287. PubMed ID: 27778463 [TBL] [Abstract][Full Text] [Related]
35. Photopic negative response of full-field electroretinography in patients with different stages of glaucomatous optic neuropathy. Kirkiewicz M; Lubiński W; Penkala K Doc Ophthalmol; 2016 Feb; 132(1):57-65. PubMed ID: 26831670 [TBL] [Abstract][Full Text] [Related]
36. Visual Field Tests for Glaucoma Patients With Initial Macular Damage: Comparison Between Frequency-doubling Technology and Standard Automated Perimetry Using 24-2 or 10-2 Visual Fields. Park HL; Lee J; Park CK J Glaucoma; 2018 Jul; 27(7):627-634. PubMed ID: 29750715 [TBL] [Abstract][Full Text] [Related]
37. Glaucomatous visual field progression with frequency-doubling technology and standard automated perimetry in a longitudinal prospective study. Haymes SA; Hutchison DM; McCormick TA; Varma DK; Nicolela MT; LeBlanc RP; Chauhan BC Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):547-54. PubMed ID: 15671281 [TBL] [Abstract][Full Text] [Related]
38. Comparison of optic nerve head topography and visual field in eyes with open-angle and angle-closure glaucoma. Boland MV; Zhang L; Broman AT; Jampel HD; Quigley HA Ophthalmology; 2008 Feb; 115(2):239-245.e2. PubMed ID: 18082888 [TBL] [Abstract][Full Text] [Related]
39. Comparison of size modulation and conventional standard automated perimetry with the 24-2 test protocol in glaucoma patients. Hirasawa K; Shoji N; Kasahara M; Matsumura K; Shimizu K Sci Rep; 2016 May; 6():25563. PubMed ID: 27149561 [TBL] [Abstract][Full Text] [Related]
40. Temporal Wedge Defects in Glaucoma: Structure/Function Correlation With Threshold Automated Perimetry of the Full Visual Field. Wall M; Lee EJ; Wanzek RJ; Chong LX; Turpin A J Glaucoma; 2020 Mar; 29(3):191-197. PubMed ID: 32108691 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]