BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 31430884)

  • 1. 3D Printed Lab-on-a-Chip Platform for Chemical Stimulation and Parallel Analysis of Ion Channel Function.
    Aschenbrenner D; Friedrich O; Gilbert DF
    Micromachines (Basel); 2019 Aug; 10(8):. PubMed ID: 31430884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Step-by-step guide to building an inexpensive 3D printed motorized positioning stage for automated high-content screening microscopy.
    Schneidereit D; Kraus L; Meier JC; Friedrich O; Gilbert DF
    Biosens Bioelectron; 2017 Jun; 92():472-481. PubMed ID: 27840039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple and low-cost production of hybrid 3D-printed microfluidic devices.
    Duong LH; Chen PC
    Biomicrofluidics; 2019 Mar; 13(2):024108. PubMed ID: 31065307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printed microfluidic lab-on-a-chip device for fiber-based dual beam optical manipulation.
    Wang H; Enders A; Preuss JA; Bahnemann J; Heisterkamp A; Torres-Mapa ML
    Sci Rep; 2021 Jul; 11(1):14584. PubMed ID: 34272408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macro-to-micro interfacing to microfluidic channels using 3D-printed templates: application to time-resolved secretion sampling of endocrine tissue.
    Brooks JC; Ford KI; Holder DH; Holtan MD; Easley CJ
    Analyst; 2016 Oct; 141(20):5714-5721. PubMed ID: 27486597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.
    Knowlton S; Yu CH; Ersoy F; Emadi S; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):025019. PubMed ID: 27321481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printed Micro Free-Flow Electrophoresis Device.
    Anciaux SK; Geiger M; Bowser MT
    Anal Chem; 2016 Aug; 88(15):7675-82. PubMed ID: 27377354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel all-3D-printed cell-on-a-chip device as a useful electroanalytical tool: Application to the simultaneous voltammetric determination of caffeine and paracetamol.
    Katseli V; Economou A; Kokkinos C
    Talanta; 2020 Feb; 208():120388. PubMed ID: 31816700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of a microfluidic system into a conventional luminescence detector using a 3D printed alignment device.
    Écija-Arenas Á; Román-Pizarro V; Fernández-Romero JM
    Mikrochim Acta; 2020 Oct; 187(11):620. PubMed ID: 33084998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel all-3D-printed thread-based microfluidic device with an embedded electrochemical detector: first application in environmental analysis of nitrite.
    Carvalho RM; Ferreira VS; Lucca BG
    Anal Methods; 2021 Mar; 13(11):1349-1357. PubMed ID: 33656036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An automated 3D-printed smartphone platform integrated with optoelectrowetting (OEW) microfluidic chip for on-site monitoring of viable algae in water.
    Lee S; Thio SK; Park SY; Bae S
    Harmful Algae; 2019 Sep; 88():101638. PubMed ID: 31582154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A portable low-cost long-term live-cell imaging platform for biomedical research and education.
    Walzik MP; Vollmar V; Lachnit T; Dietz H; Haug S; Bachmann H; Fath M; Aschenbrenner D; Abolpour Mofrad S; Friedrich O; Gilbert DF
    Biosens Bioelectron; 2015 Feb; 64():639-49. PubMed ID: 25441413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The recent development and applications of fluidic channels by 3D printing.
    Zhou Y
    J Biomed Sci; 2017 Oct; 24(1):80. PubMed ID: 29047370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PolyJet 3D-Printed Enclosed Microfluidic Channels without Photocurable Supports.
    Castiaux AD; Pinger CW; Hayter EA; Bunn ME; Martin RS; Spence DM
    Anal Chem; 2019 May; 91(10):6910-6917. PubMed ID: 31035747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D-printed microfluidic automation.
    Au AK; Bhattacharjee N; Horowitz LF; Chang TC; Folch A
    Lab Chip; 2015 Apr; 15(8):1934-41. PubMed ID: 25738695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D-Printed Bubble-Free Perfusion Cartridge System for Live-Cell Imaging.
    Terutsuki D; Mitsuno H; Kanzaki R
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33053875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Three Dimensionally Printed Paper-Based Microfluidic Platform for Investigating a Cell's Apoptosis and Intracellular Cross-Talk.
    Liu P; Li B; Fu L; Huang Y; Man M; Qi J; Sun X; Kang Q; Shen D; Chen L
    ACS Sens; 2020 Feb; 5(2):464-473. PubMed ID: 32013403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-Low-Cost 3D Bioprinting: Modification and Application of an Off-the-Shelf Desktop 3D-Printer for Biofabrication.
    Kahl M; Gertig M; Hoyer P; Friedrich O; Gilbert DF
    Front Bioeng Biotechnol; 2019; 7():184. PubMed ID: 31417899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D printing for rapid prototyping of low-Z/density ionization chamber arrays.
    Brivio D; Naumann L; Albert S; Sajo E; Zygmanski P
    Med Phys; 2019 Dec; 46(12):5770-5779. PubMed ID: 31571224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.