These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 3143129)

  • 21. The use of neutron and gamma ray spectral measurements and calculations to obtain dosimetric information for DT neutrons.
    Hertel NE; Murphie WE
    Med Phys; 1983; 10(1):66-74. PubMed ID: 6843515
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monte Carlo characterizations mapping of the (γ,n) and (n,γ) photonuclear reactions in the high energy X-ray radiation therapy.
    Ghiasi H
    Rep Pract Oncol Radiother; 2014 Jan; 19(1):30-6. PubMed ID: 24936317
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of the possibility of using photoneutron beams for radiation therapy.
    Brahme A; Montelius A; Nordell B; Reuthal M; Svensson H
    Phys Med Biol; 1980 Nov; 25(6):1111-20. PubMed ID: 7208624
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast and thermal neutron profiles for a 25-MV x-ray beam.
    Price KW; Nath R; Holeman GR
    Med Phys; 1978; 5(4):285-9. PubMed ID: 98695
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematic out-of-field secondary neutron spectrometry and dosimetry in pencil beam scanning proton therapy.
    Trinkl S; Mares V; Englbrecht FS; Wilkens JJ; Wielunski M; Parodi K; Rühm W; Hillbrand M
    Med Phys; 2017 May; 44(5):1912-1920. PubMed ID: 28294362
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microdosimetric measurements of radiation quality variations in homogeneous phantoms irradiated by fast neutron beams.
    Beach JL; Milavickas LR
    Med Phys; 1982; 9(1):52-9. PubMed ID: 6804771
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Giant dipole resonance neutron yields produced by electrons as a function of target material and thickness.
    Mao X; Kase KR; Nelson WR
    Health Phys; 1996 Feb; 70(2):207-14. PubMed ID: 8567288
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superheated drop detector for determination of neutron dose equivalent to patients undergoing high-energy x-ray and electron radiotherapy.
    Nath R; Meigooni AS; King CR; Smolen S; d'Errico F
    Med Phys; 1993; 20(3):781-7. PubMed ID: 8350837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A study of neutron radiation quality with a tissue-equivalent proportional counter for a low-energy accelerator-based in vivo neutron activation facility.
    Aslam ; Waker AJ
    Radiat Prot Dosimetry; 2011 Feb; 143(2-4):467-70. PubMed ID: 21183541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In-phantom dosimetry and spectrometry of photoneutrons from an 18 MV linear accelerator.
    d'Errico F; Nath R; Tana L; Curzio G; Alberts WG
    Med Phys; 1998 Sep; 25(9):1717-24. PubMed ID: 9775378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measurement of dose distributions of linear energy transfer in matter irradiated by fast neutrons.
    Schell MC; Pearson DW; DeLuca PM; Haight RC
    Med Phys; 1990; 17(1):1-9. PubMed ID: 2308539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of the photoneutron field produced in a medical linear accelerator.
    Kim HS; Park YH; Koo BC; Kwon JW; Lee JS; Choi HS
    Radiat Prot Dosimetry; 2007; 123(3):323-8. PubMed ID: 17077093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monte Carlo simulation of neutron dose equivalent by photoneutron production inside the primary barriers of a radiotherapy vault.
    Choi CH; Park SY; Park JM; Chun M; Kim JI
    Phys Med; 2018 Apr; 48():1-5. PubMed ID: 29728220
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cross sections for (n, 2n), (n, p) and (n, ) reactions on osmium isotopes in the neutron energy range of 13.5-14.8 MeV.
    Zhao L; Yuan J; Tuo F; Zhang Y; Kong X; Liu R; Jiang L
    Appl Radiat Isot; 2008 Oct; 66(10):1488-91. PubMed ID: 18468910
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of photoneutron dose equivalent from high-energy photons in radiotherapy.
    Lin JP; Liu WC; Lin CC
    Appl Radiat Isot; 2007 May; 65(5):599-604. PubMed ID: 17350273
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Essential considerations for accurate evaluation of photoneutron contamination in Radiotherapy.
    Karimi AH; Brkić H; Shahbazi-Gahrouei D; Haghighi SB; Jabbari I
    Appl Radiat Isot; 2019 Mar; 145():24-31. PubMed ID: 30572262
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neutron scattering in concrete and wood.
    Facure A; Silva AX; Falcão RC; Crispim VR
    Radiat Prot Dosimetry; 2006; 119(1-4):514-7. PubMed ID: 16565202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of Photoneutron Dose Measured by Bubble Detectors in Conventional Linacs and Cyberknife Unit: Effective Dose and Secondary Malignancy Risk Estimation.
    Biltekin F; Yeginer M; Ozyigit G
    Technol Cancer Res Treat; 2016 Aug; 15(4):560-5. PubMed ID: 26152750
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental kerma coefficients and dose distributions of C, N, O, Mg, Al, Si, Fe, Zr, A-150 plastic, Al203, AlN, SiO2 and ZrO2 for neutron energies up to 66 MeV.
    Schrewe UJ; Newhauser WD; Brede HJ; DeLuca PM
    Phys Med Biol; 2000 Mar; 45(3):651-83. PubMed ID: 10730963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 115In as a probe for the characterization of therapy bremsstrahlung beams and the detection of photoneutrons.
    Krmar M; Slivka J; Bikit I; Conkić L; Rudić A
    Med Phys; 1999 Apr; 26(4):564-9. PubMed ID: 10227360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.