These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31431312)

  • 1. Exploring the collagen nanostructure of dermal tissues after injury.
    Tian F; Niu Y; Jiang Y
    Burns; 2019 Dec; 45(8):1759-1764. PubMed ID: 31431312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring nanoscale structure change of dermal tissues suffering injury by small angle X-ray scattering and transmission electron microscopy.
    Jiang Y; Tian F; Wang Z; Niu Y; Yang J; Song F; Jin S; Cao Y; Dong J; Lu S
    Mol Biol Rep; 2019 Feb; 46(1):67-76. PubMed ID: 30374768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quantitative ultrastructural study of collagen fibrils in human skin, normal scars, and hypertrophic scars.
    Stewart KJ
    Clin Anat; 1995; 8(5):334-8. PubMed ID: 8535965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fractal analysis of rat dermal tissue in the different injury states.
    Xu H; Zhang J; Jiang Y; Lu S; Niu Y; Dong J; Jin S; Song F; Cao X; Qing C; Tian M; Liu Y
    Int Wound J; 2022 Aug; 19(5):1016-1022. PubMed ID: 34617391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation.
    Chen G; Chen J; Zhuo S; Xiong S; Zeng H; Jiang X; Chen R; Xie S
    Br J Dermatol; 2009 Jul; 161(1):48-55. PubMed ID: 19309369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography.
    Liebi M; Georgiadis M; Menzel A; Schneider P; Kohlbrecher J; Bunk O; Guizar-Sicairos M
    Nature; 2015 Nov; 527(7578):349-52. PubMed ID: 26581291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A porcine deep dermal partial thickness burn model with hypertrophic scarring.
    Cuttle L; Kempf M; Phillips GE; Mill J; Hayes MT; Fraser JF; Wang XQ; Kimble RM
    Burns; 2006 Nov; 32(7):806-20. PubMed ID: 16884856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can fractal dimension analysis be used in quantitating collagen structure?
    Tian F; Jiang Y; Liu Y; Lu S; Yang J; Cao Y
    Exp Dermatol; 2021 Dec; 30(12):1825-1828. PubMed ID: 34161636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro- and nanoscale structures of mesiodens dentin: Combined study of FTIR and SAXS/WAXS techniques.
    Akgun OM; Bayari SH; Ide S; Polat GG; Kalkhoran IO
    Microsc Res Tech; 2015 Jan; 78(1):52-8. PubMed ID: 25327575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in collagen and mineral nanostructure observed in osteoporosis and pharmaceutical treatments using simultaneous small- and wide-angle X-ray scattering.
    Acerbo AS; Kwaczala AT; Yang L; Judex S; Miller LM
    Calcif Tissue Int; 2014 Nov; 95(5):446-56. PubMed ID: 25190190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of electron microscopy to the study of the hypertrophic scar and related lesions.
    Kischer CW
    Scanning Microsc; 1993 Sep; 7(3):921-30; discussion 930-1. PubMed ID: 8146619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Banded structures in collagen vitrigels for corneal injury repair.
    Xia Z; Calderón-Colón X; McCally R; Maranchi J; Rong L; Hsiao B; Elisseeff J; Trexler M
    Acta Biomater; 2014 Aug; 10(8):3615-9. PubMed ID: 24859294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Six-dimensional real and reciprocal space small-angle X-ray scattering tomography.
    Schaff F; Bech M; Zaslansky P; Jud C; Liebi M; Guizar-Sicairos M; Pfeiffer F
    Nature; 2015 Nov; 527(7578):353-6. PubMed ID: 26581292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of dermal fibrosis in self-assembled skin equivalents by undifferentiated keratinocytes.
    Wang X; Liu Y; Deng Z; Dong R; Liu Y; Hu S; Li Y; Jin Y
    J Dermatol Sci; 2009 Feb; 53(2):103-11. PubMed ID: 18990546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in collagen architecture between keloid, hypertrophic scar, normotrophic scar, and normal skin: An objective histopathological analysis.
    Verhaegen PD; van Zuijlen PP; Pennings NM; van Marle J; Niessen FB; van der Horst CM; Middelkoop E
    Wound Repair Regen; 2009; 17(5):649-56. PubMed ID: 19769718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunolocalization of TGF-beta 1 in human hypertrophic scar and normal dermal tissues.
    Ghahary A; Shen YJ; Scott PG; Tredget EE
    Cytokine; 1995 Feb; 7(2):184-90. PubMed ID: 7780038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary study of human breast tissue using synchrotron radiation combining WAXS and SAXS techniques.
    Conceição AL; Antoniassi M; Poletti ME; Caldas LV
    Appl Radiat Isot; 2010; 68(4-5):799-803. PubMed ID: 19857973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression and localization of insulin-like growth factor-1 in normal and post-burn hypertrophic scar tissue in human.
    Ghahary A; Shen YJ; Wang R; Scott PG; Tredget EE
    Mol Cell Biochem; 1998 Jun; 183(1-2):1-9. PubMed ID: 9655173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implication of basement membrane development on the underlying scar in partial-thickness burn injury.
    Wood FM; Stoner M
    Burns; 1996 Sep; 22(6):459-62. PubMed ID: 8884006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of tissue fixation and dehydration on tendon collagen nanostructure.
    Turunen MJ; Khayyeri H; Guizar-Sicairos M; Isaksson H
    J Struct Biol; 2017 Sep; 199(3):209-215. PubMed ID: 28760694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.