These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 31431551)

  • 21. A comprehensive genomic, transcriptomic and proteomic analysis of a hyperosmotic stress sensitive α-proteobacterium.
    Kohler C; Lourenço RF; Bernhardt J; Albrecht D; Schüler J; Hecker M; Gomes SL
    BMC Microbiol; 2015 Mar; 15():71. PubMed ID: 25879753
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The FtsH protease is involved in development, stress response and heat shock control in Caulobacter crescentus.
    Fischer B; Rummel G; Aldridge P; Jenal U
    Mol Microbiol; 2002 Apr; 44(2):461-78. PubMed ID: 11972783
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Caulobacter crescentus Homolog of DnaA (HdaA) Also Regulates the Proteolysis of the Replication Initiator Protein DnaA.
    Wargachuk R; Marczynski GT
    J Bacteriol; 2015 Nov; 197(22):3521-32. PubMed ID: 26324449
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Kinase-Phosphatase Switch Transduces Environmental Information into a Bacterial Cell Cycle Circuit.
    Heinrich K; Sobetzko P; Jonas K
    PLoS Genet; 2016 Dec; 12(12):e1006522. PubMed ID: 27941972
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CspC and CspD are essential for Caulobacter crescentus stationary phase survival.
    Balhesteros H; Mazzon RR; da Silva CA; Lang EA; Marques MV
    Arch Microbiol; 2010 Sep; 192(9):747-58. PubMed ID: 20607520
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The B12 receptor BtuB alters the membrane integrity of Caulobacter crescentus.
    Menikpurage IP; Barraza D; Meléndez AB; Strebe S; Mera PE
    Microbiology (Reading); 2019 Mar; 165(3):311-323. PubMed ID: 30628887
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification, characterization, and chromosomal organization of cell division cycle genes in Caulobacter crescentus.
    Ohta N; Ninfa AJ; Allaire A; Kulick L; Newton A
    J Bacteriol; 1997 Apr; 179(7):2169-80. PubMed ID: 9079901
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of Caulobacter crescentus response to low temperature and identification of genes involved in freezing resistance.
    Mazzon RR; Lang EA; Braz VS; Marques MV
    FEMS Microbiol Lett; 2008 Nov; 288(2):178-85. PubMed ID: 18801049
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of high density monolayers of the biofilm bacterium Caulobacter crescentus: evaluating prospects for developing immobilized cell bioreactors.
    Smit J; Sherwood CS; Turner RF
    Can J Microbiol; 2000 Apr; 46(4):339-49. PubMed ID: 10779870
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intergenerational continuity of cell shape dynamics in Caulobacter crescentus.
    Wright CS; Banerjee S; Iyer-Biswas S; Crosson S; Dinner AR; Scherer NF
    Sci Rep; 2015 Mar; 5():9155. PubMed ID: 25778096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Signal transduction mechanisms in Caulobacter crescentus development and cell cycle control.
    Jenal U
    FEMS Microbiol Rev; 2000 Apr; 24(2):177-91. PubMed ID: 10717313
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biphasic growth dynamics control cell division in Caulobacter crescentus.
    Banerjee S; Lo K; Daddysman MK; Selewa A; Kuntz T; Dinner AR; Scherer NF
    Nat Microbiol; 2017 Jul; 2():17116. PubMed ID: 28737755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tad Pili Play a Dynamic Role in Caulobacter crescentus Surface Colonization.
    Sangermani M; Hug I; Sauter N; Pfohl T; Jenal U
    mBio; 2019 Jun; 10(3):. PubMed ID: 31213565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complex regulatory pathways coordinate cell-cycle progression and development in Caulobacter crescentus.
    Brown PJ; Hardy GG; Trimble MJ; Brun YV
    Adv Microb Physiol; 2009; 54():1-101. PubMed ID: 18929067
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative genomic evidence for a close relationship between the dimorphic prosthecate bacteria Hyphomonas neptunium and Caulobacter crescentus.
    Badger JH; Hoover TR; Brun YV; Weiner RM; Laub MT; Alexandre G; Mrázek J; Ren Q; Paulsen IT; Nelson KE; Khouri HM; Radune D; Sosa J; Dodson RJ; Sullivan SA; Rosovitz MJ; Madupu R; Brinkac LM; Durkin AS; Daugherty SC; Kothari SP; Giglio MG; Zhou L; Haft DH; Selengut JD; Davidsen TM; Yang Q; Zafar N; Ward NL
    J Bacteriol; 2006 Oct; 188(19):6841-50. PubMed ID: 16980487
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stalk formation of Brevundimonas and how it compares to Caulobacter crescentus.
    Curtis PD
    PLoS One; 2017; 12(9):e0184063. PubMed ID: 28886080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Two Chemotaxis Clusters in Caulobacter crescentus Play Different Roles in Chemotaxis and Biofilm Regulation.
    Berne C; Brun YV
    J Bacteriol; 2019 Sep; 201(18):. PubMed ID: 31109992
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Precise amounts of a novel member of a phosphotransferase superfamily are essential for growth and normal morphology in Caulobacter crescentus.
    Fuchs T; Wiget P; Osterås M; Jenal U
    Mol Microbiol; 2001 Feb; 39(3):679-92. PubMed ID: 11169108
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Involvement of organic acids and amino acids in ameliorating Ni(II) toxicity induced cell cycle dysregulation in Caulobacter crescentus: a metabolomics analysis.
    Jain A; Chen WN
    Appl Microbiol Biotechnol; 2018 May; 102(10):4563-4575. PubMed ID: 29616314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-component signaling systems and cell cycle control in Caulobacter crescentus.
    Purcell EB; Boutte CC; Crosson S
    Adv Exp Med Biol; 2008; 631():122-30. PubMed ID: 18792685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.