BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 31431618)

  • 1. Mapping histone modifications in low cell number and single cells using antibody-guided chromatin tagmentation (ACT-seq).
    Carter B; Ku WL; Kang JY; Hu G; Perrie J; Tang Q; Zhao K
    Nat Commun; 2019 Aug; 10(1):3747. PubMed ID: 31431618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CUT&Tag for efficient epigenomic profiling of small samples and single cells.
    Kaya-Okur HS; Wu SJ; Codomo CA; Pledger ES; Bryson TD; Henikoff JG; Ahmad K; Henikoff S
    Nat Commun; 2019 Apr; 10(1):1930. PubMed ID: 31036827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient chromatin accessibility mapping in situ by nucleosome-tethered tagmentation.
    Henikoff S; Henikoff JG; Kaya-Okur HS; Ahmad K
    Elife; 2020 Nov; 9():. PubMed ID: 33191916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient low-cost chromatin profiling with CUT&Tag.
    Kaya-Okur HS; Janssens DH; Henikoff JG; Ahmad K; Henikoff S
    Nat Protoc; 2020 Oct; 15(10):3264-3283. PubMed ID: 32913232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin integration labeling for mapping DNA-binding proteins and modifications with low input.
    Handa T; Harada A; Maehara K; Sato S; Nakao M; Goto N; Kurumizaka H; Ohkawa Y; Kimura H
    Nat Protoc; 2020 Oct; 15(10):3334-3360. PubMed ID: 32807906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Profiling of H3K4me3 Modification in Plants using Cleavage under Targets and Tagmentation.
    Tao X; Gao M; Wang S; Guan X
    J Vis Exp; 2022 Apr; (182):. PubMed ID: 35532268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FACT-seq: profiling histone modifications in formalin-fixed paraffin-embedded samples with low cell numbers.
    Zhao L; Xing P; Polavarapu VK; Zhao M; Valero-Martínez B; Dang Y; Maturi N; Mathot L; Neves I; Yildirim I; Swartling FJ; Sjöblom T; Uhrbom L; Chen X
    Nucleic Acids Res; 2021 Dec; 49(21):e125. PubMed ID: 34534335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of optimized concanavalin A-conjugated Dynabeads® magnetic beads for CUT&Tag.
    Fujiwara Y; Tanno Y; Sugishita H; Kishi Y; Makino Y; Okada Y
    PLoS One; 2021; 16(11):e0259846. PubMed ID: 34784358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MOWChIP-seq for low-input and multiplexed profiling of genome-wide histone modifications.
    Zhu B; Hsieh YP; Murphy TW; Zhang Q; Naler LB; Lu C
    Nat Protoc; 2019 Dec; 14(12):3366-3394. PubMed ID: 31666743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profiling chromatin states using single-cell itChIP-seq.
    Ai S; Xiong H; Li CC; Luo Y; Shi Q; Liu Y; Yu X; Li C; He A
    Nat Cell Biol; 2019 Sep; 21(9):1164-1172. PubMed ID: 31481796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A chromatin integration labelling method enables epigenomic profiling with lower input.
    Harada A; Maehara K; Handa T; Arimura Y; Nogami J; Hayashi-Takanaka Y; Shirahige K; Kurumizaka H; Kimura H; Ohkawa Y
    Nat Cell Biol; 2019 Feb; 21(2):287-296. PubMed ID: 30532068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CoBATCH for High-Throughput Single-Cell Epigenomic Profiling.
    Wang Q; Xiong H; Ai S; Yu X; Liu Y; Zhang J; He A
    Mol Cell; 2019 Oct; 76(1):206-216.e7. PubMed ID: 31471188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods for ChIP-seq analysis: A practical workflow and advanced applications.
    Nakato R; Sakata T
    Methods; 2021 Mar; 187():44-53. PubMed ID: 32240773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable single-cell profiling of chromatin modifications with sciCUT&Tag.
    Janssens DH; Greene JE; Wu SJ; Codomo CA; Minot SS; Furlan SN; Ahmad K; Henikoff S
    Nat Protoc; 2024 Jan; 19(1):83-112. PubMed ID: 37935964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetic Application of ATAC-Seq Based on Tn5 Transposase Purification Technology.
    Li W; Tim Wu U; Cheng Y; Huang Y; Mao L; Sun M; Qiu C; Zhou L; Gao L
    Genet Res (Camb); 2022; 2022():8429207. PubMed ID: 36062065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scChIX-seq infers dynamic relationships between histone modifications in single cells.
    Yeung J; Florescu M; Zeller P; de Barbanson BA; Wellenstein MD; van Oudenaarden A
    Nat Biotechnol; 2023 Jun; 41(6):813-823. PubMed ID: 36593403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution genome-wide mapping of histone modifications.
    Roh TY; Ngau WC; Cui K; Landsman D; Zhao K
    Nat Biotechnol; 2004 Aug; 22(8):1013-6. PubMed ID: 15235610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide histone modification profiling of inner cell mass and trophectoderm of bovine blastocysts by RAT-ChIP.
    Org T; Hensen K; Kreevan R; Mark E; Sarv O; Andreson R; Jaakma Ü; Salumets A; Kurg A
    PLoS One; 2019; 14(11):e0225801. PubMed ID: 31765427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Histone Modifications in Acute Myeloid Leukaemia Using Chromatin Immunoprecipitation.
    Shields BJ; Keniry A; Blewitt ME; McCormack MP
    Methods Mol Biol; 2018; 1725():177-184. PubMed ID: 29322418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of dual reading domains as novel reagents in chromatin biology reveals a new H3K9me3 and H3K36me2/3 bivalent chromatin state.
    Mauser R; Kungulovski G; Keup C; Reinhardt R; Jeltsch A
    Epigenetics Chromatin; 2017 Sep; 10(1):45. PubMed ID: 28946896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.