These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 31431623)
1. Syringeable immunotherapeutic nanogel reshapes tumor microenvironment and prevents tumor metastasis and recurrence. Song C; Phuengkham H; Kim YS; Dinh VV; Lee I; Shin IW; Shin HS; Jin SM; Um SH; Lee H; Hong KS; Jin SM; Lee E; Kang TH; Park YM; Lim YT Nat Commun; 2019 Aug; 10(1):3745. PubMed ID: 31431623 [TBL] [Abstract][Full Text] [Related]
2. Modulation of the tumor microenvironment by intratumoral administration of IMO-2125, a novel TLR9 agonist, for cancer immunotherapy. Wang D; Jiang W; Zhu F; Mao X; Agrawal S Int J Oncol; 2018 Sep; 53(3):1193-1203. PubMed ID: 29956749 [TBL] [Abstract][Full Text] [Related]
3. Intratumoral CpG-B Promotes Antitumoral Neutrophil, cDC, and T-cell Cooperation without Reprograming Tolerogenic pDC. Humbert M; Guery L; Brighouse D; Lemeille S; Hugues S Cancer Res; 2018 Jun; 78(12):3280-3292. PubMed ID: 29588348 [TBL] [Abstract][Full Text] [Related]
4. A Designer Scaffold with Immune Nanoconverters for Reverting Immunosuppression and Enhancing Immune Checkpoint Blockade Therapy. Phuengkham H; Song C; Lim YT Adv Mater; 2019 Oct; 31(42):e1903242. PubMed ID: 31490604 [TBL] [Abstract][Full Text] [Related]
5. Syringeable Near-Infrared Light-Activated In Situ Immunogenic Hydrogel Boosts the Cancer-Immunity Cycle to Enhance Anticancer Immunity. Fu Y; Zhu X; Ren L; Wan J; Wang H ACS Nano; 2024 Jun; 18(23):14877-14892. PubMed ID: 38809421 [TBL] [Abstract][Full Text] [Related]
6. Nanoengineered Immune Niches for Reprogramming the Immunosuppressive Tumor Microenvironment and Enhancing Cancer Immunotherapy. Phuengkham H; Ren L; Shin IW; Lim YT Adv Mater; 2019 Aug; 31(34):e1803322. PubMed ID: 30773696 [TBL] [Abstract][Full Text] [Related]
7. Intravenous injection of the oncolytic virus M1 awakens antitumor T cells and overcomes resistance to checkpoint blockade. Liu Y; Cai J; Liu W; Lin Y; Guo L; Liu X; Qin Z; Xu C; Zhang Y; Su X; Deng K; Yan G; Liang J Cell Death Dis; 2020 Dec; 11(12):1062. PubMed ID: 33311488 [TBL] [Abstract][Full Text] [Related]
9. Lyophilizable and Multifaceted Toll-like Receptor 7/8 Agonist-Loaded Nanoemulsion for the Reprogramming of Tumor Microenvironments and Enhanced Cancer Immunotherapy. Kim SY; Kim S; Kim JE; Lee SN; Shin IW; Shin HS; Jin SM; Noh YW; Kang YJ; Kim YS; Kang TH; Park YM; Lim YT ACS Nano; 2019 Nov; 13(11):12671-12686. PubMed ID: 31589013 [TBL] [Abstract][Full Text] [Related]
10. Anti-pancreatic tumor efficacy of a Listeria-based, Annexin A2-targeting immunotherapy in combination with anti-PD-1 antibodies. Kim VM; Blair AB; Lauer P; Foley K; Che X; Soares K; Xia T; Muth ST; Kleponis J; Armstrong TD; Wolfgang CL; Jaffee EM; Brockstedt D; Zheng L J Immunother Cancer; 2019 May; 7(1):132. PubMed ID: 31113479 [TBL] [Abstract][Full Text] [Related]
11. Tumor Microenvironment Remodeling by Intratumoral Oncolytic Vaccinia Virus Enhances the Efficacy of Immune-Checkpoint Blockade. Chon HJ; Lee WS; Yang H; Kong SJ; Lee NK; Moon ES; Choi J; Han EC; Kim JH; Ahn JB; Kim JH; Kim C Clin Cancer Res; 2019 Mar; 25(5):1612-1623. PubMed ID: 30538109 [TBL] [Abstract][Full Text] [Related]
12. A vaccine-based nanosystem for initiating innate immunity and improving tumor immunotherapy. Zheng DW; Gao F; Cheng Q; Bao P; Dong X; Fan JX; Song W; Zeng X; Cheng SX; Zhang XZ Nat Commun; 2020 Apr; 11(1):1985. PubMed ID: 32332752 [TBL] [Abstract][Full Text] [Related]
13. Combinatory therapy adopting nanoparticle-based cancer vaccination with immune checkpoint blockade for treatment of post-surgical tumor recurrences. Chung CK; Da Silva CG; Kralisch D; Chan A; Ossendorp F; Cruz LJ J Control Release; 2018 Sep; 285():56-66. PubMed ID: 30008371 [TBL] [Abstract][Full Text] [Related]
14. Checkpoint blockade-based immunotherapy in the context of tumor microenvironment: Opportunities and challenges. Duan J; Wang Y; Jiao S Cancer Med; 2018 Sep; 7(9):4517-4529. PubMed ID: 30088347 [TBL] [Abstract][Full Text] [Related]
15. Biomaterial-based scaffold for in situ chemo-immunotherapy to treat poorly immunogenic tumors. Wang H; Najibi AJ; Sobral MC; Seo BR; Lee JY; Wu D; Li AW; Verbeke CS; Mooney DJ Nat Commun; 2020 Nov; 11(1):5696. PubMed ID: 33173046 [TBL] [Abstract][Full Text] [Related]
16. Intratumoral immunotherapy: using the tumor as the remedy. Marabelle A; Tselikas L; de Baere T; Houot R Ann Oncol; 2017 Dec; 28(suppl_12):xii33-xii43. PubMed ID: 29253115 [TBL] [Abstract][Full Text] [Related]
17. The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies. Petitprez F; Meylan M; de Reyniès A; Sautès-Fridman C; Fridman WH Front Immunol; 2020; 11():784. PubMed ID: 32457745 [TBL] [Abstract][Full Text] [Related]
18. Vascular Targeting to Increase the Efficiency of Immune Checkpoint Blockade in Cancer. Georganaki M; van Hooren L; Dimberg A Front Immunol; 2018; 9():3081. PubMed ID: 30627131 [TBL] [Abstract][Full Text] [Related]
19. Drug Delivery for Cancer Immunotherapy and Vaccines. Batty CJ; Tiet P; Bachelder EM; Ainslie KM Pharm Nanotechnol; 2018; 6(4):232-244. PubMed ID: 30227827 [TBL] [Abstract][Full Text] [Related]
20. Metabolic Regulation of Tregs in Cancer: Opportunities for Immunotherapy. Wang H; Franco F; Ho PC Trends Cancer; 2017 Aug; 3(8):583-592. PubMed ID: 28780935 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]