These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31431814)

  • 1. New insights into the physics of inertial microfluidics in curved microchannels. II. Adding an additive rule to understand complex cross-sections.
    Rafeie M; Hosseinzadeh S; Huang J; Mihandoust A; Warkiani ME; Taylor RA
    Biomicrofluidics; 2019 May; 13(3):034118. PubMed ID: 31431814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spiral microchannels with concave cross-section for enhanced cancer cell inertial separation.
    Zhang X; Zheng Z; Gu Q; He Y; Huang D; Liu Y; Mi J; Oseyemi AE
    Mikrochim Acta; 2024 Sep; 191(10):634. PubMed ID: 39347843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput Particle Concentration Using Complex Cross-Section Microchannels.
    Mihandoust A; Razavi Bazaz S; Maleki-Jirsaraei N; Alizadeh M; A Taylor R; Ebrahimi Warkiani M
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32331275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertial microfluidics in contraction-expansion microchannels: A review.
    Jiang D; Ni C; Tang W; Huang D; Xiang N
    Biomicrofluidics; 2021 Jul; 15(4):041501. PubMed ID: 34262632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into the physics of inertial microfluidics in curved microchannels. I. Relaxing the fixed inflection point assumption.
    Rafeie M; Hosseinzadeh S; Taylor RA; Warkiani ME
    Biomicrofluidics; 2019 May; 13(3):034117. PubMed ID: 31431813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spiral microchannel with rectangular and trapezoidal cross-sections for size based particle separation.
    Guan G; Wu L; Bhagat AA; Li Z; Chen PC; Chao S; Ong CJ; Han J
    Sci Rep; 2013; 3():1475. PubMed ID: 23502529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle slip velocity influences inertial focusing of particles in curved microchannels.
    Deshpande S; Tallapragada P
    Sci Rep; 2018 Aug; 8(1):11852. PubMed ID: 30087382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sheath-less high throughput inertial separation of small microparticles in spiral microchannels with trapezoidal cross-section.
    Al-Halhouli A; Albagdady A; Dietzel A
    RSC Adv; 2019 Dec; 9(71):41970-41976. PubMed ID: 35541623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolving dynamics of inertial migration in straight and curved microchannels by direct cross-sectional imaging.
    Zhou J; Papautsky I
    Biomicrofluidics; 2021 Jan; 15(1):014101. PubMed ID: 33425090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inertial focusing in non-rectangular cross-section microchannels and manipulation of accessible focusing positions.
    Kim J; Lee J; Wu C; Nam S; Di Carlo D; Lee W
    Lab Chip; 2016 Mar; 16(6):992-1001. PubMed ID: 26853995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fundamentals of elasto-inertial particle focusing in curved microfluidic channels.
    Xiang N; Zhang X; Dai Q; Cheng J; Chen K; Ni Z
    Lab Chip; 2016 Jul; 16(14):2626-35. PubMed ID: 27300118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential Sorting of Microparticles Using Spiral Microchannels with Elliptic Configurations.
    Erdem K; Ahmadi VE; Kosar A; Kuddusi L
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32295138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lab-on-Chip Systems for Cell Sorting: Main Features and Advantages of Inertial Focusing in Spiral Microchannels.
    Petruzzellis I; Martínez Vázquez R; Caragnano S; Gaudiuso C; Osellame R; Ancona A; Volpe A
    Micromachines (Basel); 2024 Sep; 15(9):. PubMed ID: 39337795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle focusing in staged inertial microfluidic devices for flow cytometry.
    Oakey J; Applegate RW; Arellano E; Di Carlo D; Graves SW; Toner M
    Anal Chem; 2010 May; 82(9):3862-7. PubMed ID: 20373755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning assisted fast prediction of inertial lift in microchannels.
    Su J; Chen X; Zhu Y; Hu G
    Lab Chip; 2021 Jun; 21(13):2544-2556. PubMed ID: 33998624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dean flow-coupled inertial focusing in curved channels.
    Ramachandraiah H; Ardabili S; Faridi AM; Gantelius J; Kowalewski JM; Mårtensson G; Russom A
    Biomicrofluidics; 2014 May; 8(3):034117. PubMed ID: 25379077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inertial Focusing and Separation of Particles in Similar Curved Channels.
    Ying Y; Lin Y
    Sci Rep; 2019 Nov; 9(1):16575. PubMed ID: 31719582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-Dependent Inertial Focusing Position Shift and Particle Separations in Triangular Microchannels.
    Kim JA; Lee JR; Je TJ; Jeon EC; Lee W
    Anal Chem; 2018 Feb; 90(3):1827-1835. PubMed ID: 29271639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundamentals of inertial focusing in microchannels.
    Zhou J; Papautsky I
    Lab Chip; 2013 Mar; 13(6):1121-32. PubMed ID: 23353899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inertial cell sorting of microparticle-laden flows: An innovative OpenFOAM-based arbitrary Lagrangian-Eulerian numerical approach.
    Hashemi Shahraki Z; Navidbakhsh M; Taylor RA
    Biomicrofluidics; 2021 Jan; 15(1):014111. PubMed ID: 33643513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.