These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31432023)

  • 41. Qualitative and quantitative analysis based on digital images to determine the adulteration of ketchup samples with Sudan I dye.
    Reile CG; Rodríguez MS; Fernandes DDS; Gomes AA; Diniz PHGD; Di Anibal CV
    Food Chem; 2020 Oct; 328():127101. PubMed ID: 32480258
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Automated analytical microsystem for the spectrophotometric monitoring of titratable acidity in white, rosé and red wines.
    Sández N; Calvo-López A; Vidigal SSMP; Rangel AOSS; Alonso-Chamarro J
    Anal Chim Acta; 2019 Dec; 1091():50-58. PubMed ID: 31679574
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assessing saffron (Crocus sativus L.) adulteration with plant-derived adulterants by diffuse reflectance infrared Fourier transform spectroscopy coupled with chemometrics.
    Petrakis EA; Polissiou MG
    Talanta; 2017 Jan; 162():558-566. PubMed ID: 27837871
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Detection and quantification of adulteration of sesame oils with vegetable oils using gas chromatography and multivariate data analysis.
    Peng D; Bi Y; Ren X; Yang G; Sun S; Wang X
    Food Chem; 2015 Dec; 188():415-21. PubMed ID: 26041212
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods.
    Rodríguez SD; Rolandelli G; Buera MP
    Food Chem; 2019 Feb; 274():392-401. PubMed ID: 30372956
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Quick and Efficient Non-Targeted Screening Test for Saffron Authentication: Application of Chemometrics to Gas-Chromatographic Data.
    Morozzi P; Zappi A; Gottardi F; Locatelli M; Melucci D
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31319572
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Anthocyanins as markers for the classification of Argentinean wines according to botanical and geographical origin. Chemometric modeling of liquid chromatography-mass spectrometry data.
    Pisano PL; Silva MF; Olivieri AC
    Food Chem; 2015 May; 175():174-80. PubMed ID: 25577067
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Adulteration of the anthocyanin content of red wines: perspectives for authentication by Fourier transform-near infrared and 1H NMR spectroscopies.
    Ferrari E; Foca G; Vignali M; Tassi L; Ulrici A
    Anal Chim Acta; 2011 Sep; 701(2):139-51. PubMed ID: 21801880
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Orthogonal signal correction applied to the classification of wine and molasses vinegar samples by near-infrared spectroscopy. Feasibility study for the detection and quantification of adulterated vinegar samples.
    Sáiz-Abajo MJ; González-Sáiz JM; Pizarro C
    Anal Bioanal Chem; 2005 May; 382(2):412-20. PubMed ID: 15864497
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hue-saturation-density (HSD) model for stain recognition in digital images from transmitted light microscopy.
    van Der Laak JA; Pahlplatz MM; Hanselaar AG; de Wilde PC
    Cytometry; 2000 Apr; 39(4):275-84. PubMed ID: 10738280
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis.
    Kamruzzaman M; Sun DW; ElMasry G; Allen P
    Talanta; 2013 Jan; 103():130-6. PubMed ID: 23200368
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Prediction of compositional and sensory characteristics using RGB digital images and multivariate calibration techniques.
    Foca G; Masino F; Antonelli A; Ulrici A
    Anal Chim Acta; 2011 Nov; 706(2):238-45. PubMed ID: 22023857
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef.
    Meza-Márquez OG; Gallardo-Velázquez T; Osorio-Revilla G
    Meat Sci; 2010 Oct; 86(2):511-9. PubMed ID: 20598447
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization and quantification of grape variety by means of shikimic acid concentration and protein fingerprint in still white wines.
    Chabreyrie D; Chauvet S; Guyon F; Salagoïty MH; Antinelli JF; Medina B
    J Agric Food Chem; 2008 Aug; 56(16):6785-90. PubMed ID: 18624410
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Combination of visible and mid-infrared spectra for the prediction of chemical parameters of wines.
    Sen I; Ozturk B; Tokatli F; Ozen B
    Talanta; 2016 Dec; 161():130-137. PubMed ID: 27769388
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Classification of red wines using suitable markers coupled with multivariate statistic analysis.
    Geana EI; Popescu R; Costinel D; Dinca OR; Ionete RE; Stefanescu I; Artem V; Bala C
    Food Chem; 2016 Feb; 192():1015-24. PubMed ID: 26304442
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Robust Ultraviolet-Visible (UV-Vis) Partial Least-Squares (PLS) Models for Tannin Quantification in Red Wine.
    Aleixandre-Tudo JL; Nieuwoudt H; Aleixandre JL; Du Toit WJ
    J Agric Food Chem; 2015 Feb; 63(4):1088-1098. PubMed ID: 25591104
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A fast and inexpensive approach to characterize Slovak Tokaj selection wines using infrared spectroscopy and chemometrics.
    Machyňáková A; Schneider MP; Khvalbota L; Vyviurska O; Špánik I; Gomes AA
    Food Chem; 2021 Apr; 357():129715. PubMed ID: 33878582
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Qualitative and quantitative detection of honey adulterated with high-fructose corn syrup and maltose syrup by using near-infrared spectroscopy.
    Li S; Zhang X; Shan Y; Su D; Ma Q; Wen R; Li J
    Food Chem; 2017 Mar; 218():231-236. PubMed ID: 27719903
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Instrumental measurement of bitter taste in red wine using an electronic tongue.
    Rudnitskaya A; Nieuwoudt HH; Muller N; Legin A; du Toit M; Bauer FF
    Anal Bioanal Chem; 2010 Aug; 397(7):3051-60. PubMed ID: 20549490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.