BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31432119)

  • 1. MAP‑1B, PACS‑2 and AHCYL1 are regulated by miR‑34A/B/C and miR‑449 in neuroplasticity following traumatic spinal cord injury in rats: Preliminary explorative results from microarray data.
    Cao H; Zhang Y; Chu Z; Zhao B; Wang H; An L
    Mol Med Rep; 2019 Oct; 20(4):3011-3018. PubMed ID: 31432119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinformatics Analysis of microRNA Time-Course Expression in Brown Rat (Rattus norvegicus): Spinal Cord Injury Self-Repair.
    Liu Y; Han N; Li Q; Li Z
    Spine (Phila Pa 1976); 2016 Jan; 41(2):97-103. PubMed ID: 26641843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of gene expression in rats with spinal cord injury based on microarray data.
    Chen G; Fang X; Yu M
    Mol Med Rep; 2015 Aug; 12(2):2465-72. PubMed ID: 25936407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of pivotal genes and pathways for spinal cord injury via bioinformatics analysis.
    Zhu Z; Shen Q; Zhu L; Wei X
    Mol Med Rep; 2017 Oct; 16(4):3929-3937. PubMed ID: 28731189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Further insight into molecular mechanism underlying thoracic spinal cord injury using bioinformatics methods.
    Wang W; Liu R; Xu Z; Niu X; Mao Z; Meng Q; Cao X
    Mol Med Rep; 2015 Dec; 12(6):7851-8. PubMed ID: 26497545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of crucial genes associated with rat traumatic spinal cord injury.
    Yang Z; Lv Q; Wang Z; Dong X; Yang R; Zhao W
    Mol Med Rep; 2017 Apr; 15(4):1997-2006. PubMed ID: 28260098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of molecular pathway changes after spinal cord injury by microarray analysis.
    Zhang H; Wang Y
    J Orthop Surg Res; 2016 Sep; 11(1):101. PubMed ID: 27628653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanisms underlying the positive role of treadmill training in locomotor recovery after spinal cord injury.
    Liu Q; Zhang B; Liu C; Zhao D
    Spinal Cord; 2017 May; 55(5):441-446. PubMed ID: 27922623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of molecular mechanism of spinal cord injury with time based on bioinformatics data.
    Wen T; Hou J; Wang F; Zhang Y; Zhang T; Sun T
    Spinal Cord; 2016 Jun; 54(6):431-8. PubMed ID: 26503224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated analysis of competing endogenous RNA (ceRNA) networks in subacute stage of spinal cord injury.
    Wang N; He L; Yang Y; Li S; Chen Y; Tian Z; Ji Y; Wang Y; Pang M; Wang Y; Liu B; Rong L
    Gene; 2020 Feb; 726():144171. PubMed ID: 31669638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinformatics analysis of the molecular mechanisms underlying traumatic spinal cord injury.
    Zhao SJ; Zhou W; Chen J; Luo YJ; Yin GY
    Mol Med Rep; 2018 Jun; 17(6):8484-8492. PubMed ID: 29693160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying gene expression profile of spinal cord injury in rat by bioinformatics strategy.
    Jin L; Wu Z; Xu W; Hu X; Zhang J; Xue Z; Cheng L
    Mol Biol Rep; 2014 May; 41(5):3169-77. PubMed ID: 24595446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of disease-related miRNAs based on co-expression network in spinal cord injury.
    Xing SM; Wang J; He X; Lai J; Shen L; Chen D; Fu K; Tan J
    Int J Neurosci; 2015 Apr; 125(4):270-6. PubMed ID: 24946205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the molecular mechanisms of osteosarcoma by the integrated analysis of mRNAs and miRNA microarrays.
    Shen H; Wang W; Ni B; Zou Q; Lu H; Wang Z
    Int J Mol Med; 2018 Jul; 42(1):21-30. PubMed ID: 29620143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinformatics analyses of pathways and gene predictions in IL-1α and IL-1β knockout mice with spinal cord injury.
    Zhu Z; Wang D; Jiao W; Chen G; Cao Y; Zhang Q; Wang J
    Acta Histochem; 2017 Sep; 119(7):663-670. PubMed ID: 28851482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinformatics analysis of microarray data to reveal the pathogenesis of brain ischemia.
    He J; Gao Y; Wu G; Lei X; Zhang Y; Pan W; Yu H
    Mol Med Rep; 2018 Jul; 18(1):333-341. PubMed ID: 29749511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene expression profiles reveal key pathways and genes associated with neuropathic pain in patients with spinal cord injury.
    He X; Fan L; Wu Z; He J; Cheng B
    Mol Med Rep; 2017 Apr; 15(4):2120-2128. PubMed ID: 28260076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clustering analysis to identify key genes associated with motor neuron excitability following spinal cord injury.
    Ni Y; Zhang K
    Int J Neurosci; 2019 Sep; 129(9):856-863. PubMed ID: 30821549
    [No Abstract]   [Full Text] [Related]  

  • 19. Identification of critical genes associated with spinal cord injury based on the gene expression profile of spinal cord tissues from trkB.T1 knockout mice.
    Wei L; He F; Zhang W; Chen W; Yu B
    Mol Med Rep; 2019 Mar; 19(3):2013-2020. PubMed ID: 30747207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA Microarray Analysis in Screening Features of Genes Involved in Spinal Cord Injury.
    Liu Y; Wang Y; Teng Z; Zhang X; Ding M; Zhang Z; Chen J; Xu Y
    Med Sci Monit; 2016 May; 22():1571-81. PubMed ID: 27160807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.