These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 31432295)
1. BLADE-ON-PETIOLE genes are not involved in the transition from protonema to gametophore in the moss Physcomitrella patens. Hata Y; Naramoto S; Kyozuka J J Plant Res; 2019 Sep; 132(5):617-627. PubMed ID: 31432295 [TBL] [Abstract][Full Text] [Related]
2. MicroRNA534a control of BLADE-ON-PETIOLE 1 and 2 mediates juvenile-to-adult gametophyte transition in Physcomitrella patens. Saleh O; Issman N; Seumel GI; Stav R; Samach A; Reski R; Frank W; Arazi T Plant J; 2011 Feb; 65(4):661-74. PubMed ID: 21235646 [TBL] [Abstract][Full Text] [Related]
3. AP2-type transcription factors determine stem cell identity in the moss Physcomitrella patens. Aoyama T; Hiwatashi Y; Shigyo M; Kofuji R; Kubo M; Ito M; Hasebe M Development; 2012 Sep; 139(17):3120-9. PubMed ID: 22833122 [TBL] [Abstract][Full Text] [Related]
4. Two ANGUSTIFOLIA genes regulate gametophore and sporophyte development in Physcomitrella patens. Hashida Y; Takechi K; Abiru T; Yabe N; Nagase H; Hattori K; Takio S; Sato Y; Hasebe M; Tsukaya H; Takano H Plant J; 2020 Mar; 101(6):1318-1330. PubMed ID: 31674691 [TBL] [Abstract][Full Text] [Related]
5. Diluted seawater affects phytohormone receptors and maintains the protonema stage in Physcomitrella patens. Zheng Z; Gao S; Huan L; Wang GC Plant J; 2018 Jan; 93(1):119-130. PubMed ID: 29124815 [TBL] [Abstract][Full Text] [Related]
6. Comprehensive analysis of the Ppatg3 mutant reveals that autophagy plays important roles in gametophore senescence in Physcomitrella patens. Chen Z; Wang W; Pu X; Dong X; Gao B; Li P; Jia Y; Liu A; Liu L BMC Plant Biol; 2020 Sep; 20(1):440. PubMed ID: 32967624 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of reference genes for RT qPCR analyses of structure-specific and hormone regulated gene expression in Physcomitrella patens gametophytes. Le Bail A; Scholz S; Kost B PLoS One; 2013; 8(8):e70998. PubMed ID: 23951063 [TBL] [Abstract][Full Text] [Related]
8. Involvement of the CYP78A subfamily of cytochrome P450 monooxygenases in protonema growth and gametophore formation in the moss Physcomitrella patens. Katsumata T; Fukazawa J; Magome H; Jikumaru Y; Kamiya Y; Natsume M; Kawaide H; Yamaguchi S Biosci Biotechnol Biochem; 2011; 75(2):331-6. PubMed ID: 21350301 [TBL] [Abstract][Full Text] [Related]
9. SEC6 exocyst subunit contributes to multiple steps of growth and development of Physcomitrella (Physcomitrium patens). Brejšková L; Hála M; Rawat A; Soukupová H; Cvrčková F; Charlot F; Nogué F; Haluška S; Žárský V Plant J; 2021 May; 106(3):831-843. PubMed ID: 33599020 [TBL] [Abstract][Full Text] [Related]
10. PAS-histidine kinases PHK1 and PHK2 exert oxygen-dependent dual and opposite effects on gametophore formation in the moss Physcomitrella patens. Ryo M; Yamashino T; Yamakawa H; Fujita Y; Aoki S Biochem Biophys Res Commun; 2018 Sep; 503(4):2861-2865. PubMed ID: 30100059 [TBL] [Abstract][Full Text] [Related]
11. Light-regulated PAS-containing histidine kinases delay gametophore formation in the moss Physcomitrella patens. Ryo M; Yamashino T; Nomoto Y; Goto Y; Ichinose M; Sato K; Sugita M; Aoki S J Exp Bot; 2018 Sep; 69(20):4839-4851. PubMed ID: 29992239 [TBL] [Abstract][Full Text] [Related]
12. CHASE domain-containing receptors play an essential role in the cytokinin response of the moss Physcomitrella patens. von Schwartzenberg K; Lindner AC; Gruhn N; Šimura J; Novák O; Strnad M; Gonneau M; Nogué F; Heyl A J Exp Bot; 2016 Feb; 67(3):667-79. PubMed ID: 26596764 [TBL] [Abstract][Full Text] [Related]
13. Defective Kernel 1 (DEK1) is required for three-dimensional growth in Physcomitrella patens. Perroud PF; Demko V; Johansen W; Wilson RC; Olsen OA; Quatrano RS New Phytol; 2014 Aug; 203(3):794-804. PubMed ID: 24844771 [TBL] [Abstract][Full Text] [Related]
14. A CELLULOSE SYNTHASE (CESA) gene essential for gametophore morphogenesis in the moss Physcomitrella patens. Goss CA; Brockmann DJ; Bushoven JT; Roberts AW Planta; 2012 Jun; 235(6):1355-67. PubMed ID: 22215046 [TBL] [Abstract][Full Text] [Related]
15. The phenotype of the CRINKLY4 deletion mutant of Physcomitrella patens suggests a broad role in developmental regulation in early land plants. Demko V; Ako E; Perroud PF; Quatrano R; Olsen OA Planta; 2016 Jul; 244(1):275-84. PubMed ID: 27100110 [TBL] [Abstract][Full Text] [Related]
16. NO GAMETOPHORES 2 Is a Novel Regulator of the 2D to 3D Growth Transition in the Moss Physcomitrella patens. Moody LA; Kelly S; Clayton R; Weeks Z; Emms DM; Langdale JA Curr Biol; 2021 Feb; 31(3):555-563.e4. PubMed ID: 33242390 [TBL] [Abstract][Full Text] [Related]
17. Eight types of stem cells in the life cycle of the moss Physcomitrella patens. Kofuji R; Hasebe M Curr Opin Plant Biol; 2014 Feb; 17():13-21. PubMed ID: 24507489 [TBL] [Abstract][Full Text] [Related]
18. Proteomics of Physcomitrella patens protonemata subjected to treatment with 12-oxo-phytodienoic acid. Luo W; Nanjo Y; Komatsu S; Matsuura H; Takahashi K Biosci Biotechnol Biochem; 2016 Dec; 80(12):2357-2364. PubMed ID: 27558085 [TBL] [Abstract][Full Text] [Related]
19. The 2D to 3D growth transition in the moss Physcomitrella patens. Moody LA Curr Opin Plant Biol; 2019 Feb; 47():88-95. PubMed ID: 30399606 [TBL] [Abstract][Full Text] [Related]
20. MicroRNA-mediated establishment of transcription factor gradients controlling developmental phase transitions. Saleh O; Arazi T; Frank W Plant Signal Behav; 2011 Jun; 6(6):873-7. PubMed ID: 21543901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]