BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 31432407)

  • 1. Sample Fractionation Techniques for CSF Peptide Spectral Library Generation.
    Pacharra S; Marcus K; May C
    Methods Mol Biol; 2019; 2044():69-77. PubMed ID: 31432407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reproducibility, Specificity and Accuracy of Relative Quantification Using Spectral Library-based Data-independent Acquisition.
    Barkovits K; Pacharra S; Pfeiffer K; Steinbach S; Eisenacher M; Marcus K; Uszkoreit J
    Mol Cell Proteomics; 2020 Jan; 19(1):181-197. PubMed ID: 31699904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitive Immunopeptidomics by Leveraging Available Large-Scale Multi-HLA Spectral Libraries, Data-Independent Acquisition, and MS/MS Prediction.
    Pak H; Michaux J; Huber F; Chong C; Stevenson BJ; Müller M; Coukos G; Bassani-Sternberg M
    Mol Cell Proteomics; 2021; 20():100080. PubMed ID: 33845167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SWATH Mass Spectrometry Applied to Cerebrospinal Fluid Differential Proteomics: Establishment of a Sample-Specific Method.
    Anjo SI; Santa C; Manadas B
    Methods Mol Biol; 2019; 2044():169-189. PubMed ID: 31432413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Cerebrospinal Fluid via Data-Independent Acquisition Mass Spectrometry.
    Barkovits K; Linden A; Galozzi S; Schilde L; Pacharra S; Mollenhauer B; Stoepel N; Steinbach S; May C; Uszkoreit J; Eisenacher M; Marcus K
    J Proteome Res; 2018 Oct; 17(10):3418-3430. PubMed ID: 30207155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of fractionation proteomics for local SWATH library building.
    Govaert E; Van Steendam K; Willems S; Vossaert L; Dhaenens M; Deforce D
    Proteomics; 2017 Aug; 17(15-16):. PubMed ID: 28664598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Top-Down Proteomics Applied to Human Cerebrospinal Fluid.
    Gay M; Sánchez-Jiménez E; Villarreal L; Vilanova M; Huguet R; Arauz-Garofalo G; Díaz-Lobo M; López-Ferrer D; Vilaseca M
    Methods Mol Biol; 2019; 2044():193-219. PubMed ID: 31432414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Evaluation of Different Protein Fractions of Cerebrospinal Fluid Using
    Birke R; Krause E; Schümann M; Blasig IE; Haseloff RF
    Methods Mol Biol; 2019; 2044():119-128. PubMed ID: 31432410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sample Size-Comparable Spectral Library Enhances Data-Independent Acquisition-Based Proteome Coverage of Low-Input Cells.
    Siyal AA; Chen ES; Chan HJ; Kitata RB; Yang JC; Tu HL; Chen YJ
    Anal Chem; 2021 Dec; 93(51):17003-17011. PubMed ID: 34904835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of Cerebrospinal Fluid Proteome Variations by Isobaric Labeling Coupled with Strong Cation-Exchange Chromatography and Tandem Mass Spectrometry.
    Lachén-Montes M; González-Morales A; Fernández-Irigoyen J; Santamaría E
    Methods Mol Biol; 2019; 2044():155-168. PubMed ID: 31432412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A gas phase fractionation acquisition scheme integrating ion mobility for rapid diaPASEF library generation.
    Penny J; Arefian M; Schroeder GN; Bengoechea JA; Collins BC
    Proteomics; 2023 Apr; 23(7-8):e2200038. PubMed ID: 36876969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Versatile Workflow for Cerebrospinal Fluid Proteomic Analysis with Mass Spectrometry: A Matter of Choice between Deep Coverage and Sample Throughput.
    Macron C; Núñez Galindo A; Cominetti O; Dayon L
    Methods Mol Biol; 2019; 2044():129-154. PubMed ID: 31432411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptidomic Workflow Applied to Cerebrospinal Fluid Analysis.
    Ziganshin RH; Kovalchuk SI; Azarkin IV
    Methods Mol Biol; 2019; 2044():111-118. PubMed ID: 31432409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Customized Consensus Spectral Library Building for Untargeted Quantitative Metabolomics Analysis with Data Independent Acquisition Mass Spectrometry and MetaboDIA Workflow.
    Chen G; Walmsley S; Cheung GCM; Chen L; Cheng CY; Beuerman RW; Wong TY; Zhou L; Choi H
    Anal Chem; 2017 May; 89(9):4897-4906. PubMed ID: 28391692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constructing a Tandem Mass Spectral Library for Forensic Ricin Identification.
    O'Bryon I; Tucker AE; Kaiser BLD; Wahl KL; Merkley ED
    J Proteome Res; 2019 Nov; 18(11):3926-3935. PubMed ID: 31566388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Urinary Proteome Library Generation Methods on Data-Independent Acquisition MS Analysis and its Application in Normal Urinary Proteome Analysis.
    Zhao M; Liu X; Sun H; Guo Z; Liu X; Sun W
    Proteomics Clin Appl; 2019 Sep; 13(5):e1800152. PubMed ID: 31017348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applying 'Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra' (SWATH) for systematic toxicological analysis with liquid chromatography-high-resolution tandem mass spectrometry.
    Arnhard K; Gottschall A; Pitterl F; Oberacher H
    Anal Bioanal Chem; 2015 Jan; 407(2):405-14. PubMed ID: 25366975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CSF Sample Preparation for Data-Independent Acquisition.
    Barkovits K; Tönges L; Marcus K
    Methods Mol Biol; 2019; 2044():61-67. PubMed ID: 31432406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral Library Search Improves Assignment of TMT Labeled MS/MS Spectra.
    Shen J; Pagala VR; Breuer AM; Peng J; Bin Ma ; Wang X
    J Proteome Res; 2018 Sep; 17(9):3325-3331. PubMed ID: 30096983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acquiring and Analyzing Data Independent Acquisition Proteomics Experiments without Spectrum Libraries.
    Pino LK; Just SC; MacCoss MJ; Searle BC
    Mol Cell Proteomics; 2020 Jul; 19(7):1088-1103. PubMed ID: 32312845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.