BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31432407)

  • 21. Microcapillary liquid chromatography/tandem mass spectrometry using alkaline pH mobile phases and positive ion detection.
    Tomlinson AJ; Chicz RM
    Rapid Commun Mass Spectrom; 2003; 17(9):909-16. PubMed ID: 12717763
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring the precursor ion exclusion feature of liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry for improving protein identification in shotgun proteome analysis.
    Wang N; Li L
    Anal Chem; 2008 Jun; 80(12):4696-710. PubMed ID: 18479145
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improvements in Mass Spectrometry Assay Library Generation for Targeted Proteomics.
    Teleman J; Hauri S; Malmström J
    J Proteome Res; 2017 Jul; 16(7):2384-2392. PubMed ID: 28516777
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expansion of the ion library for mining SWATH-MS data through fractionation proteomics.
    Zi J; Zhang S; Zhou R; Zhou B; Xu S; Hou G; Tan F; Wen B; Wang Q; Lin L; Liu S
    Anal Chem; 2014 Aug; 86(15):7242-6. PubMed ID: 24969961
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hyphenation of capillary zone electrophoresis with mass spectrometry for proteomic analysis: Optimization and comparison of two coupling interfaces.
    Gou MJ; Nys G; Cobraiville G; Demelenne A; Servais AC; Fillet M
    J Chromatogr A; 2020 May; 1618():460873. PubMed ID: 31987525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Progress in the spectral library based protein identification strategy].
    Yu D; Ma J; Xie Z; Bai M; Zhu Y; Shu K
    Sheng Wu Gong Cheng Xue Bao; 2018 Apr; 34(4):525-536. PubMed ID: 29701026
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comprehensive Prostate Fluid-Based Spectral Libraries for Enhanced Protein Detection in Urine.
    Ha A; Khoo A; Ignatchenko V; Khan S; Waas M; Vesprini D; Liu SK; Nyalwidhe JO; Semmes OJ; Boutros PC; Kislinger T
    J Proteome Res; 2024 May; 23(5):1768-1778. PubMed ID: 38580319
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Data Dependent-Independent Acquisition (DDIA) Proteomics.
    Guan S; Taylor PP; Han Z; Moran MF; Ma B
    J Proteome Res; 2020 Aug; 19(8):3230-3237. PubMed ID: 32539411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of DIA proteomics data using MSFragger-DIA and FragPipe computational platform.
    Yu F; Teo GC; Kong AT; Fröhlich K; Li GX; Demichev V; Nesvizhskii AI
    Nat Commun; 2023 Jul; 14(1):4154. PubMed ID: 37438352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tandem mass spectral libraries of peptides in digests of individual proteins: Human Serum Albumin (HSA).
    Dong Q; Yan X; Kilpatrick LE; Liang Y; Mirokhin YA; Roth JS; Rudnick PA; Stein SE
    Mol Cell Proteomics; 2014 Sep; 13(9):2435-49. PubMed ID: 24889059
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Data-Independent Acquisition Coupled to Visible Laser-Induced Dissociation at 473 nm (DIA-LID) for Peptide-Centric Specific Analysis of Cysteine-Containing Peptide Subset.
    Garcia L; Girod M; Rompais M; Dugourd P; Carapito C; Lemoine J
    Anal Chem; 2018 Mar; 90(6):3928-3935. PubMed ID: 29465226
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Technical advances in proteomics: new developments in data-independent acquisition.
    Hu A; Noble WS; Wolf-Yadlin A
    F1000Res; 2016; 5():. PubMed ID: 27092249
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolomic spectral libraries for data-independent SWATH liquid chromatography mass spectrometry acquisition.
    Bruderer T; Varesio E; Hidasi AO; Duchoslav E; Burton L; Bonner R; Hopfgartner G
    Anal Bioanal Chem; 2018 Mar; 410(7):1873-1884. PubMed ID: 29411086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The NISTmAb tryptic peptide spectral library for monoclonal antibody characterization.
    Dong Q; Liang Y; Yan X; Markey SP; Mirokhin YA; Tchekhovskoi DV; Bukhari TH; Stein SE
    MAbs; 2018 Apr; 10(3):354-369. PubMed ID: 29425077
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiplexed peptide analysis using data-independent acquisition and Skyline.
    Egertson JD; MacLean B; Johnson R; Xuan Y; MacCoss MJ
    Nat Protoc; 2015 Jun; 10(6):887-903. PubMed ID: 25996789
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human follicular fluid proteomic and peptidomic composition quantitative studies by SWATH-MS methodology. Applicability of high pH RP-HPLC fractionation.
    Lewandowska AE; Macur K; Czaplewska P; Liss J; Łukaszuk K; Ołdziej S
    J Proteomics; 2019 Jan; 191():131-142. PubMed ID: 29530678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics.
    Yang Y; Liu X; Shen C; Lin Y; Yang P; Qiao L
    Nat Commun; 2020 Jan; 11(1):146. PubMed ID: 31919359
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PIONEER: Pipeline for Generating High-Quality Spectral Libraries for DIA-MS Data.
    Manda SS; Noor Z; Hains PG; Zhong Q
    Curr Protoc; 2021 Mar; 1(3):e69. PubMed ID: 33656278
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calibr improves spectral library search for spectrum-centric analysis of data independent acquisition proteomics.
    Wang JH; Choong WK; Chen CT; Sung TY
    Sci Rep; 2022 Feb; 12(1):2045. PubMed ID: 35132134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reverse and Random Decoy Methods for False Discovery Rate Estimation in High Mass Accuracy Peptide Spectral Library Searches.
    Zhang Z; Burke M; Mirokhin YA; Tchekhovskoi DV; Markey SP; Yu W; Chaerkady R; Hess S; Stein SE
    J Proteome Res; 2018 Feb; 17(2):846-857. PubMed ID: 29281288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.