BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 31432425)

  • 1. Mass Spectrometry Applied to Human Cerebrospinal Fluid Lipidome.
    Millán L; Fernández-Irigoyen J; Santamaría E; Mayo R
    Methods Mol Biol; 2019; 2044():353-361. PubMed ID: 31432425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation and optimization of common lipid extraction methods in cerebrospinal fluid samples.
    Reichl B; Eichelberg N; Freytag M; Gojo J; Peyrl A; Buchberger W
    J Chromatogr B Analyt Technol Biomed Life Sci; 2020 Sep; 1153():122271. PubMed ID: 32738523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global Monitoring of the Mammalian Lipidome by Quantitative Shotgun Lipidomics.
    Nielsen IØ; Maeda K; Bilgin M
    Methods Mol Biol; 2017; 1609():123-139. PubMed ID: 28660579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Derivatization and Ultrahigh Resolution and Accurate Mass Spectrometry Strategies for "Shotgun" Lipidome Analysis.
    Ryan E; Reid GE
    Acc Chem Res; 2016 Sep; 49(9):1596-604. PubMed ID: 27575732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retention behavior of lipids in reversed-phase ultrahigh-performance liquid chromatography-electrospray ionization mass spectrometry.
    Ovčačíková M; Lísa M; Cífková E; Holčapek M
    J Chromatogr A; 2016 Jun; 1450():76-85. PubMed ID: 27179677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospray ionization tandem mass spectrometry (ESI-MS/MS)-based shotgun lipidomics.
    Isaac G
    Methods Mol Biol; 2011; 708():259-75. PubMed ID: 21207296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of lipid profiling in three parts (muscle, head and viscera) of tilapia (Oreochromis niloticus) using lipidomics with UPLC-ESI-Q-TOF-MS.
    He C; Cao J; Bao Y; Sun Z; Liu Z; Li C
    Food Chem; 2021 Jun; 347():129057. PubMed ID: 33484957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipidomic Profiling Reveals Significant Perturbations of Intracellular Lipid Homeostasis in Enterovirus-Infected Cells.
    Yan B; Zou Z; Chu H; Chan G; Tsang JO; Lai PM; Yuan S; Yip CC; Yin F; Kao RY; Sze KH; Lau SK; Chan JF; Yuen KY
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31779252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted Analysis of the Plant Lipidome by UPLC-NanoESI-MS/MS.
    Herrfurth C; Liu YT; Feussner I
    Methods Mol Biol; 2021; 2295():135-155. PubMed ID: 34047976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid Chromatography-Mass Spectrometry (LC-MS)-Based Analysis of Molecular Lipids in Algae Samples.
    Nygren H; Seppänen-Laakso T; Rischer H
    Methods Mol Biol; 2020; 1980():215-222. PubMed ID: 29159726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HIGH RESOLUTION MASS SPECTROMETRY IN LIPIDOMICS.
    Züllig T; Köfeler HC
    Mass Spectrom Rev; 2021 May; 40(3):162-176. PubMed ID: 32233039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry.
    Brügger B
    Annu Rev Biochem; 2014; 83():79-98. PubMed ID: 24606142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyses of Cholesterol and Derivatives in Ocular Tissues Using LC-MS/MS Methods.
    Piqueras M; Theotoka D; Sarohia GS; Bhattacharya SK
    Methods Mol Biol; 2019; 1996():53-59. PubMed ID: 31127547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical Methodologies for Lipidomics in Hemp Plant.
    Cerrato A; Capriotti AL; Montone CM; Aita SE; Cannazza G; Citti C; Piovesana S; Aldo L
    Methods Mol Biol; 2021; 2306():257-273. PubMed ID: 33954952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipidomics from sample preparation to data analysis: a primer.
    Züllig T; Trötzmüller M; Köfeler HC
    Anal Bioanal Chem; 2020 Apr; 412(10):2191-2209. PubMed ID: 31820027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipidomic profiling of non-mineralized dental plaque and biofilm by untargeted UHPLC-QTOF-MS/MS and SWATH acquisition.
    Drotleff B; Roth SR; Henkel K; Calderón C; Schlotterbeck J; Neukamm MA; Lämmerhofer M
    Anal Bioanal Chem; 2020 Apr; 412(10):2303-2314. PubMed ID: 31942654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrahigh-Performance capillary liquid chromatography-mass spectrometry at 35 kpsi for separation of lipids.
    Sorensen MJ; Miller KE; Jorgenson JW; Kennedy RT
    J Chromatogr A; 2020 Jan; 1611():460575. PubMed ID: 31607445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Annotation of the human cerebrospinal fluid lipidome using high resolution mass spectrometry and a dedicated data processing workflow.
    Seyer A; Boudah S; Broudin S; Junot C; Colsch B
    Metabolomics; 2016; 12():91. PubMed ID: 27110228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utility of Moderate and High-Resolution Mass Spectrometry for Class-Specific Lipid Identification and Quantification.
    Del Carmen Piqueras M
    Methods Mol Biol; 2017; 1609():83-90. PubMed ID: 28660576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of lipid profiles in three species of ascidians using UPLC-ESI-Q-TOF-MS-based lipidomic study.
    Hou Q; Huang Y; Jiang L; Zhong K; Huang Y; Gao H; Bu Q
    Food Res Int; 2021 Aug; 146():110454. PubMed ID: 34119246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.