BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 31432815)

  • 1. Self-sacrificial organic lithium salt enhanced initial Coulombic efficiency for safer and greener lithium-ion batteries.
    Wang D; Zhang Z; Hong B; Lai Y
    Chem Commun (Camb); 2019 Sep; 55(72):10737-10739. PubMed ID: 31432815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual Roles of Li
    Bian X; Pang Q; Wei Y; Zhang D; Gao Y; Chen G
    Chemistry; 2018 Sep; 24(52):13815-13820. PubMed ID: 29975430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by "Water-in-Bisalt" Electrolyte.
    Suo L; Borodin O; Sun W; Fan X; Yang C; Wang F; Gao T; Ma Z; Schroeder M; von Cresce A; Russell SM; Armand M; Angell A; Xu K; Wang C
    Angew Chem Int Ed Engl; 2016 Jun; 55(25):7136-41. PubMed ID: 27120336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.
    Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt.
    Jeżowski P; Crosnier O; Deunf E; Poizot P; Béguin F; Brousse T
    Nat Mater; 2018 Feb; 17(2):167-173. PubMed ID: 29251724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithium-cyclo-difluoromethane-1,1-bis(sulfonyl)imide as a stabilizing electrolyte additive for improved high voltage applications in lithium-ion batteries.
    Murmann P; Streipert B; Kloepsch R; Ignatiev N; Sartori P; Winter M; Cekic-Laskovic I
    Phys Chem Chem Phys; 2015 Apr; 17(14):9352-8. PubMed ID: 25760031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alleviating Surface Degradation of Nickel-Rich Layered Oxide Cathode Material by Encapsulating with Nanoscale Li-Ions/Electrons Superionic Conductors Hybrid Membrane for Advanced Li-Ion Batteries.
    Li L; Xu M; Yao Q; Chen Z; Song L; Zhang Z; Gao C; Wang P; Yu Z; Lai Y
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):30879-30889. PubMed ID: 27805812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Disulfide Cosolvent Electrolytes for High-Performance Lithium Sulfur Batteries.
    Gu S; Wen Z; Qian R; Jin J; Wang Q; Wu M; Zhuo S
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34379-34386. PubMed ID: 27998100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Mixed Salt Electrolytes to Stabilize Silicon Anodes for Lithium-Ion Batteries via in Situ Formation of Li-M-Si Ternaries (M = Mg, Zn, Al, Ca).
    Han B; Liao C; Dogan F; Trask SE; Lapidus SH; Vaughey JT; Key B
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29780-29790. PubMed ID: 31318201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High areal capacity hybrid magnesium-lithium-ion battery with 99.9% Coulombic efficiency for large-scale energy storage.
    Yoo HD; Liang Y; Li Y; Yao Y
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):7001-7. PubMed ID: 25799037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Stabilization of LiNi
    Zhao W; Zou L; Zheng J; Jia H; Song J; Engelhard MH; Wang C; Xu W; Yang Y; Zhang JG
    ChemSusChem; 2018 Jul; 11(13):2211-2220. PubMed ID: 29717541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium-Sulfur Batteries.
    Li G; Huang Q; He X; Gao Y; Wang D; Kim SH; Wang D
    ACS Nano; 2018 Feb; 12(2):1500-1507. PubMed ID: 29376330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Additive-Assisted Novel Dual-Salt Electrolyte Addresses Wide Temperature Operation of Lithium-Metal Batteries.
    Shangguan X; Xu G; Cui Z; Wang Q; Du X; Chen K; Huang S; Jia G; Li F; Wang X; Lu D; Dong S; Cui G
    Small; 2019 Apr; 15(16):e1900269. PubMed ID: 30848874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries.
    Eshetu GG; Judez X; Li C; Bondarchuk O; Rodriguez-Martinez LM; Zhang H; Armand M
    Angew Chem Int Ed Engl; 2017 Nov; 56(48):15368-15372. PubMed ID: 28994228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triphenylamine-Based Metal-Organic Frameworks as Cathode Materials in Lithium-Ion Batteries with Coexistence of Redox Active Sites, High Working Voltage, and High Rate Stability.
    Peng Z; Yi X; Liu Z; Shang J; Wang D
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14578-85. PubMed ID: 27225327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Intrinsic Flame-Retardant Organic Electrolyte for Safe Lithium-Sulfur Batteries.
    Yang H; Guo C; Chen J; Naveed A; Yang J; Nuli Y; Wang J
    Angew Chem Int Ed Engl; 2019 Jan; 58(3):791-795. PubMed ID: 30426649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface Heterostructure Induced by PrPO
    Ding F; Li J; Deng F; Xu G; Liu Y; Yang K; Kang F
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27936-27945. PubMed ID: 28758399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithium Difluorophosphate as a Dendrite-Suppressing Additive for Lithium Metal Batteries.
    Shi P; Zhang L; Xiang H; Liang X; Sun Y; Xu W
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22201-22209. PubMed ID: 29898366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VO
    Pei C; Xiong F; Sheng J; Yin Y; Tan S; Wang D; Han C; An Q; Mai L
    ACS Appl Mater Interfaces; 2017 May; 9(20):17060-17066. PubMed ID: 28467043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.