BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31432855)

  • 1. Chalcogenide-gold dual-layers coupled to gold nanoparticles for reconfigurable perfect absorption.
    Cao T; Liu K; Lu L; Chui HC; Simpson RE
    Nanoscale; 2019 Nov; 11(43):20546-20553. PubMed ID: 31432855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-Area Broadband Near-Perfect Absorption from a Thin Chalcogenide Film Coupled to Gold Nanoparticles.
    Cao T; Liu K; Lu L; Chui HC; Simpson RE
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5176-5182. PubMed ID: 30632371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A reconfigurable hyperbolic metamaterial perfect absorber.
    Behera JK; Liu K; Lian M; Cao T
    Nanoscale Adv; 2021 Mar; 3(6):1758-1766. PubMed ID: 36132556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chalcogenide-based, all-dielectric, ultrathin metamaterials with perfect, incidence-angle sensitive, mid-infrared absorption: inverse design, analysis, and applications.
    Avrahamy R; Milgrom B; Zohar M; Auslender M
    Nanoscale; 2021 Jul; 13(26):11455-11469. PubMed ID: 34160520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ge
    Sreekanth KV; Han S; Singh R
    Adv Mater; 2018 May; 30(21):e1706696. PubMed ID: 29635805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-IR reconfigurable 1D Ag grating Fabry-Perot absorber hybridized with phase-change material GSST.
    Zamani N; Hatef A; Nadgaran H
    Appl Opt; 2021 Sep; 60(25):7596-7602. PubMed ID: 34613226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perfect Dual-Band Absorber Based on Plasmonic Effect with the Cross-Hair/Nanorod Combination.
    Chou Chau YF; Chou Chao CT; Huang HJ; Kooh MRR; Kumara NTRN; Lim CM; Chiang HP
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32182902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coscinodiscus diatom inspired bi-layered photonic structures with near-perfect absorptance accompanied by tunable absorption characteristics.
    Zaman S; Hassan MM; Hasanuzzaman M; Baten MZ
    Opt Express; 2020 Aug; 28(17):25007-25021. PubMed ID: 32907032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation.
    Lu Y; Dong W; Chen Z; Pors A; Wang Z; Bozhevolnyi SI
    Sci Rep; 2016 Jul; 6():30650. PubMed ID: 27470207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy.
    Chen K; Adato R; Altug H
    ACS Nano; 2012 Sep; 6(9):7998-8006. PubMed ID: 22920565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of hybrid narrow-band plasmonic absorber based on chalcogenide phase change material in the infrared spectrum.
    Alves Oliveira I; Gomes de Souza IL; Rodriguez-Esquerre VF
    Sci Rep; 2021 Nov; 11(1):21919. PubMed ID: 34754022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A large-scale lithography-free metasurface with spectrally tunable super absorption.
    Liu K; Zeng X; Jiang S; Ji D; Song H; Zhang N; Gan Q
    Nanoscale; 2014 Jun; 6(11):5599-605. PubMed ID: 24740161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intensity Switchable and Wide-Angle Mid-Infrared Perfect Absorber with Lithography-Free Phase-Change Film of Ge
    Hua X; Zheng G
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31195643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithography-Free Broadband Ultrathin-Film Absorbers with Gap-Plasmon Resonance for Organic Photovoltaics.
    Choi M; Kang G; Shin D; Barange N; Lee CW; Ko DH; Kim K
    ACS Appl Mater Interfaces; 2016 May; 8(20):12997-3008. PubMed ID: 27160410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perfect optical absorbers in a wide range of incidence by photonic heterostructures containing layered hyperbolic metamaterials.
    Lu G; Wu F; Zheng M; Chen C; Zhou X; Diao C; Liu F; Du G; Xue C; Jiang H; Chen H
    Opt Express; 2019 Feb; 27(4):5326-5336. PubMed ID: 30876132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Almost-total absorption of light in thin, biperiodic, weakly-absorbing semiconductor gratings.
    Popov E; Fehrembach AL; McPhedran RC
    Opt Express; 2016 Jul; 24(15):16410-24. PubMed ID: 27464093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconfigurable and spectrally switchable perfect absorber based on a phase-change material.
    Prakash S R; Kumar R; Mitra A
    Appl Opt; 2022 Apr; 61(10):2888-2897. PubMed ID: 35471366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconfigurable, graphene-coated, chalcogenide nanowires with a sub-10-nm enantioselective sorting capability.
    Cao T; Tian L; Liang H; Qin KR
    Microsyst Nanoeng; 2018; 4():7. PubMed ID: 31057897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmable nanophotonic planar resonator filter-absorber based on phase-change InSbTe.
    Oliveira IA; de Souza ILG; Rodriguez-Esquerre VF
    Sci Rep; 2023 Aug; 13(1):13225. PubMed ID: 37580408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perfect selective metamaterial solar absorbers.
    Wang H; Wang L
    Opt Express; 2013 Nov; 21 Suppl 6():A1078-93. PubMed ID: 24514927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.