These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Density Functional Theory Study of Hydrogen Adsorption in a Ti-Decorated Mg-Based Metal-Organic Framework-74. Suksaengrat P; Amornkitbamrung V; Srepusharawoot P; Ahuja R Chemphyschem; 2016 Mar; 17(6):879-84. PubMed ID: 26717417 [TBL] [Abstract][Full Text] [Related]
8. Insight into the Reversible Hydrogen Storage of Titanium-Decorated Boron-Doped C Chai Z; Liu L; Liang C; Liu Y; Wang Q Molecules; 2024 Oct; 29(19):. PubMed ID: 39407656 [TBL] [Abstract][Full Text] [Related]
10. Hydrogen storage in C3Ti complex using quantum chemical methods and molecular dynamics simulations. Kalamse V; Wadnerkar N; Chaudhari A J Mol Model; 2012 Jun; 18(6):2423-31. PubMed ID: 21989957 [TBL] [Abstract][Full Text] [Related]
11. Interaction of Boron Nitride Nanotubes with Aluminium: A Computational Study. Rohmann C; Yamakov VI; Park C; Fay C; Hankel M; Searles DJ J Phys Chem C Nanomater Interfaces; 2018 Jul; 122(27):15226-15240. PubMed ID: 33868542 [TBL] [Abstract][Full Text] [Related]
12. Theoretical demonstration of the potentiality of boron nitride nanotubes to encapsulate anticancer molecule. El Khalifi M; Duverger E; Gharbi T; Boulahdour H; Picaud F Phys Chem Chem Phys; 2015 Nov; 17(44):30057-64. PubMed ID: 26498990 [TBL] [Abstract][Full Text] [Related]
13. Impact of position and number of boron atom substitution on hydrogen uptake capacity of Li-decorated pentalene. Tavhare P; Deshmukh A; Chaudhari A Phys Chem Chem Phys; 2016 Dec; 19(1):681-694. PubMed ID: 27918041 [TBL] [Abstract][Full Text] [Related]
14. Improvement of Hydrogen Adsorption on the Simultaneously Decorated Graphene Sheet with Titanium and Palladium Atoms. Tavakkoli Heravi MJ; Farhadian N Langmuir; 2024 Jul; 40(27):13879-13891. PubMed ID: 38922333 [TBL] [Abstract][Full Text] [Related]
15. Theoretical investigation of the divacancies in boron nitride nanotubes: properties and surface reactivity toward various adsorbates. Zhao JX; Ding YH J Chem Phys; 2009 Jul; 131(1):014706. PubMed ID: 19586116 [TBL] [Abstract][Full Text] [Related]
16. The performance of adsorption, dissociation and diffusion mechanism of hydrogen on the Ti-doped ZrCo(110) surface. Wang Q; Kong X; Han H; Sang G; Zhang G; Gao T Phys Chem Chem Phys; 2019 Jun; 21(23):12597-12605. PubMed ID: 31150026 [TBL] [Abstract][Full Text] [Related]
17. H2-Binding by Neutral and Multiply Charged Titaniums: Hydrogen Storage Capacity of Titanium Mono- and Dications. Lee HM; Kim DY; Pak C; Singh NJ; Kim KS J Chem Theory Comput; 2011 Apr; 7(4):969-78. PubMed ID: 26606346 [TBL] [Abstract][Full Text] [Related]
18. Cryogenic separation of hydrogen isotopes in single-walled carbon and boron-nitride nanotubes: insight into the mechanism of equilibrium quantum sieving in quasi-one-dimensional pores. Kowalczyk P; Gauden PA; Terzyk AP J Phys Chem B; 2008 Jul; 112(28):8275-84. PubMed ID: 18570395 [TBL] [Abstract][Full Text] [Related]
19. A theoretical study of silicon-doped boron nitride nanotubes serving as a potential chemical sensor for hydrogen cyanide. Wang R; Zhang D; Liu Y; Liu C Nanotechnology; 2009 Dec; 20(50):505704. PubMed ID: 19923655 [TBL] [Abstract][Full Text] [Related]
20. Theoretical investigation of Ti-adsorbed graphene for hydrogen storage using the ab-initio method. Park HL; Yoo DS; Yi SC; Chung YC J Nanosci Nanotechnol; 2011 Jul; 11(7):6131-5. PubMed ID: 22121672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]