BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31432872)

  • 1. A photodynamic antibacterial spray-coating based on the host-guest immobilization of the photosensitizer methylene blue.
    Yao TT; Wang J; Xue YF; Yu WJ; Gao Q; Ferreira L; Ren KF; Ji J
    J Mater Chem B; 2019 Aug; 7(33):5089-5095. PubMed ID: 31432872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased photoluminescence and photodynamic therapy efficiency of hydroxyapatite-β-cyclodextrin-methylene blue@carbon powders with the favor of hydrogen bonding effect.
    Zhang K; Sun H; Li X; Bai J; Du Q; Li C
    Photochem Photobiol Sci; 2021 Oct; 20(10):1323-1331. PubMed ID: 34562235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular characteristics of the photosensitizer TONS504: Comparison of its singlet oxygen quantum yields and photodynamic antimicrobial effect with those of methylene blue.
    Shinji K; Chikama T; Okazaki S; Uto Y; Sueoka K; Pertiwi YD; Ko JA; Kiuchi Y; Sakaguchi T
    J Photochem Photobiol B; 2021 Aug; 221():112239. PubMed ID: 34116319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triazine-based covalent organic frameworks for photodynamic inactivation of bacteria as type-II photosensitizers.
    Liu T; Hu X; Wang Y; Meng L; Zhou Y; Zhang J; Chen M; Zhang X
    J Photochem Photobiol B; 2017 Oct; 175():156-162. PubMed ID: 28888168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro investigation of methylene blue-bearing, electrostatically assembled aptamer-silica nanocomposites as potential photodynamic therapeutics.
    Ding TS; Huang XC; Luo YL; Hsu HY
    Colloids Surf B Biointerfaces; 2015 Nov; 135():217-224. PubMed ID: 26255165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibacterial photodynamic activity of photosensitizer-embedded alginate-pectin-carboxymethyl cellulose composite biopolymer films.
    Sharma M; Dube A; Majumder SK
    Lasers Med Sci; 2021 Jun; 36(4):763-772. PubMed ID: 32767164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complexing Methylene Blue with Phosphorus Dendrimers to Increase Photodynamic Activity.
    Dabrzalska M; Janaszewska A; Zablocka M; Mignani S; Majoral JP; Klajnert-Maculewicz B
    Molecules; 2017 Feb; 22(3):. PubMed ID: 28241491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel set of symmetric methylene blue derivatives exhibits effective bacteria photokilling - a structure-response study.
    Gollmer A; Felgenträger A; Bäumler W; Maisch T; Späth A
    Photochem Photobiol Sci; 2015 Feb; 14(2):335-51. PubMed ID: 25408481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization and utilization of single chain metallocatanionic vesicles for antibacterial photodynamic therapy (aPDT) against
    Sharma B; Kaur G; Chaudhary GR
    J Mater Chem B; 2020 Oct; 8(40):9304-9313. PubMed ID: 32966540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The antimicrobial activity of photodynamic therapy against Streptococcus mutans using different photosensitizers.
    Rolim JP; de-Melo MA; Guedes SF; Albuquerque-Filho FB; de Souza JR; Nogueira NA; Zanin IC; Rodrigues LK
    J Photochem Photobiol B; 2012 Jan; 106():40-6. PubMed ID: 22070899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photodynamic-active smart biocompatible material for an antibacterial surface coating.
    Kováčová M; Kleinová A; Vajďák J; Humpolíček P; Kubát P; Bodík M; Marković Z; Špitálský Z
    J Photochem Photobiol B; 2020 Oct; 211():112012. PubMed ID: 32919175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of methylene blue onto Langmuir monolayers representing cell membranes may explain its efficiency as photosensitizer in photodynamic therapy.
    Schmidt TF; Caseli L; Oliveira ON; Itri R
    Langmuir; 2015 Apr; 31(14):4205-12. PubMed ID: 25798992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Energy Transfer in a Donor-Acceptor Photosensitizer Triggers Efficient Photodynamic Therapy.
    Zhao Y; Zhang Z; Lu Z; Wang H; Tang Y
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):38467-38474. PubMed ID: 31553165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of thermosensitive hydrogel containing methylene blue for topical antimicrobial photodynamic therapy.
    Leung B; Dharmaratne P; Yan W; Chan BCL; Lau CBS; Fung KP; Ip M; Leung SSY
    J Photochem Photobiol B; 2020 Jan; 203():111776. PubMed ID: 31931388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced photodynamic therapy efficacy of methylene blue-loaded calcium phosphate nanoparticles.
    Seong DY; Kim YJ
    J Photochem Photobiol B; 2015 May; 146():34-43. PubMed ID: 25794464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms.
    Tang W; Xu H; Kopelman R; Philbert MA
    Photochem Photobiol; 2005; 81(2):242-9. PubMed ID: 15595888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano-formulation of a photosensitizer using a DNA tetrahedron and its potential for in vivo photodynamic therapy.
    Kim KR; Bang D; Ahn DR
    Biomater Sci; 2016 Apr; 4(4):605-9. PubMed ID: 26674121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene oxide-methylene blue nanocomposite in photodynamic therapy of human breast cancer.
    Hosseinzadeh R; Khorsandi K; Hosseinzadeh G
    J Biomol Struct Dyn; 2018 Jul; 36(9):2216-2223. PubMed ID: 28681663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoinduced protein modifications by methylene blue and naproxen.
    Bracchitta G; Catalfo A; De Guidi G
    Photochem Photobiol Sci; 2012 Dec; 11(12):1886-96. PubMed ID: 22930354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LED-activated methylene blue-loaded Pluronic-nanogold hybrids for in vitro photodynamic therapy.
    Simon T; Boca-Farcau S; Gabudean AM; Baldeck P; Astilean S
    J Biophotonics; 2013 Dec; 6(11-12):950-9. PubMed ID: 23893922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.