These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 3143361)
1. Rapid turnover of sphingosine synthesized de novo from [14C]serine by Chinese hamster ovary cells. Medlock KA; Merrill AH Biochem Biophys Res Commun; 1988 Nov; 157(1):232-7. PubMed ID: 3143361 [TBL] [Abstract][Full Text] [Related]
2. Metabolism of short-chain ceramide and dihydroceramide analogues in Chinese hamster ovary (CHO) cells. Ridgway ND; Merriam DL Biochim Biophys Acta; 1995 Apr; 1256(1):57-70. PubMed ID: 7742357 [TBL] [Abstract][Full Text] [Related]
3. Differential roles of de novo sphingolipid biosynthesis and turnover in the "burst" of free sphingosine and sphinganine, and their 1-phosphates and N-acyl-derivatives, that occurs upon changing the medium of cells in culture. Smith ER; Merrill AH J Biol Chem; 1995 Aug; 270(32):18749-58. PubMed ID: 7642524 [TBL] [Abstract][Full Text] [Related]
4. Utilization of exogenously supplied sphingosine analogues for sphingolipid biosynthesis in Chinese hamster ovary and mouse LM cell fibroblasts. Ladenson RC; Monsey JD; Allin J; Silbert DF J Biol Chem; 1993 Apr; 268(11):7650-9. PubMed ID: 8463295 [TBL] [Abstract][Full Text] [Related]
5. Metabolic effects of short-chain ceramide and glucosylceramide on sphingolipids and protein kinase C. Abe A; Wu D; Shayman JA; Radin NS Eur J Biochem; 1992 Dec; 210(3):765-73. PubMed ID: 1483461 [TBL] [Abstract][Full Text] [Related]
6. Biosynthesis of long-chain (sphingoid) bases from serine by LM cells. Evidence for introduction of the 4-trans-double bond after de novo biosynthesis of N-acylsphinganine(s). Merrill AH; Wang E J Biol Chem; 1986 Mar; 261(8):3764-9. PubMed ID: 3081509 [TBL] [Abstract][Full Text] [Related]
7. Turnover of endogenous ceramide in cultured normal and Farber fibroblasts. van Echten-Deckert G; Klein A; Linke T; Heinemann T; Weisgerber J; Sandhoff K J Lipid Res; 1997 Dec; 38(12):2569-79. PubMed ID: 9458280 [TBL] [Abstract][Full Text] [Related]
8. De novo ceramide accumulation due to inhibition of its conversion to complex sphingolipids in apoptotic photosensitized cells. Dolgachev V; Farooqui MS; Kulaeva OI; Tainsky MA; Nagy B; Hanada K; Separovic D J Biol Chem; 2004 May; 279(22):23238-49. PubMed ID: 15020599 [TBL] [Abstract][Full Text] [Related]
9. Gamma-tocotrienol profoundly alters sphingolipids in cancer cells by inhibition of dihydroceramide desaturase and possibly activation of sphingolipid hydrolysis during prolonged treatment. Jang Y; Rao X; Jiang Q J Nutr Biochem; 2017 Aug; 46():49-56. PubMed ID: 28456081 [TBL] [Abstract][Full Text] [Related]
10. Sphingolipid metabolism in Bacteroideaceae. Stoffel W; Dittmar K; Wilmes R Hoppe Seylers Z Physiol Chem; 1975 Jun; 356(6):715-25. PubMed ID: 1181270 [TBL] [Abstract][Full Text] [Related]
11. Sphingolipids in mammalian cell signalling. Ohanian J; Ohanian V Cell Mol Life Sci; 2001 Dec; 58(14):2053-68. PubMed ID: 11814056 [TBL] [Abstract][Full Text] [Related]
12. 2n-fatty acids from phosphatidylcholine label sphingolipids--a novel role of phospholipase A2? Meyer SG; Karow W; de Groot H Biochim Biophys Acta; 2005 Jun; 1735(1):68-78. PubMed ID: 15950537 [TBL] [Abstract][Full Text] [Related]
13. Sphingolipids are essential for the growth of Chinese hamster ovary cells. Restoration of the growth of a mutant defective in sphingoid base biosynthesis by exogenous sphingolipids. Hanada K; Nishijima M; Kiso M; Hasegawa A; Fujita S; Ogawa T; Akamatsu Y J Biol Chem; 1992 Nov; 267(33):23527-33. PubMed ID: 1429697 [TBL] [Abstract][Full Text] [Related]
14. Metabolic processing of gangliosides by human fibroblasts in culture--formation and recycling of separate pools of sphingosine. Chigorno V; Riva C; Valsecchi M; Nicolini M; Brocca P; Sonnino S Eur J Biochem; 1997 Dec; 250(3):661-9. PubMed ID: 9461288 [TBL] [Abstract][Full Text] [Related]
15. Ceramide metabolite, not intact ceramide molecule, may be responsible for cellular toxicity. Tserng KY; Griffin RL Biochem J; 2004 Jun; 380(Pt 3):715-22. PubMed ID: 14998372 [TBL] [Abstract][Full Text] [Related]
16. The differential regulation of cyclic AMP by sphingomyelin-derived lipids and the modulation of sphingolipid-stimulated extracellular signal regulated kinase-2 in airway smooth muscle. Pyne S; Pyne NJ Biochem J; 1996 May; 315 ( Pt 3)(Pt 3):917-23. PubMed ID: 8645177 [TBL] [Abstract][Full Text] [Related]
17. Differential labelling of sphingolipids by [3H]serine and ([3H]methyl)-methionine in fish leukocytes. Bodennec J; Brichon G; Koul O; Portoukalian J; Zwingelstein G Comp Biochem Physiol B Biochem Mol Biol; 2000 Apr; 125(4):523-31. PubMed ID: 10904865 [TBL] [Abstract][Full Text] [Related]
18. [14C]serine from phosphatidylserine labels ceramide and sphingomyelin in L929 cells: evidence for a new metabolic relationship between glycerophospholipids and sphingolipids. Meyer SG; de Groot H Arch Biochem Biophys; 2003 Feb; 410(1):107-11. PubMed ID: 12559982 [TBL] [Abstract][Full Text] [Related]
19. Sphingolipid metabolism during human platelet activation. Simon CG; Gear AR Thromb Res; 1999 Apr; 94(1):13-23. PubMed ID: 10213177 [TBL] [Abstract][Full Text] [Related]
20. Sphingolipids as mediators of effects of platelet-derived growth factor in vascular smooth muscle cells. Jacobs LS; Kester M Am J Physiol; 1993 Sep; 265(3 Pt 1):C740-7. PubMed ID: 8214030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]