These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 31433635)
1. Zhou C; Ge N; Guo J; Zhu L; Ma Z; Cheng S; Wang J J Agric Food Chem; 2019 Sep; 67(36):10126-10136. PubMed ID: 31433635 [TBL] [Abstract][Full Text] [Related]
2. Inoculation with Bacillus subtilis and Azospirillum brasilense Produces Abscisic Acid That Reduces Irt1-Mediated Cadmium Uptake of Roots. Xu Q; Pan W; Zhang R; Lu Q; Xue W; Wu C; Song B; Du S J Agric Food Chem; 2018 May; 66(20):5229-5236. PubMed ID: 29738246 [TBL] [Abstract][Full Text] [Related]
3. Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. Li S; Zhou X; Huang Y; Zhu L; Zhang S; Zhao Y; Guo J; Chen J; Chen R BMC Plant Biol; 2013 Aug; 13():114. PubMed ID: 23924433 [TBL] [Abstract][Full Text] [Related]
4. Iron acquisition by phytosiderophores contributes to cadmium tolerance. Meda AR; Scheuermann EB; Prechsl UE; Erenoglu B; Schaaf G; Hayen H; Weber G; von Wirén N Plant Physiol; 2007 Apr; 143(4):1761-73. PubMed ID: 17337530 [TBL] [Abstract][Full Text] [Related]
5. Reduced Cd accumulation in Zea mays: a protective role for phytosiderophores? Hill KA; Lion LW; Ahner BA Environ Sci Technol; 2002 Dec; 36(24):5363-8. PubMed ID: 12521162 [TBL] [Abstract][Full Text] [Related]
6. Overexpression of the iron transporter NtPIC1 in tobacco mediates tolerance to cadmium. Gong X; Yin L; Chen J; Guo C Plant Cell Rep; 2015 Nov; 34(11):1963-73. PubMed ID: 26209973 [TBL] [Abstract][Full Text] [Related]
7. Mediation of Zinc and Iron Accumulation in Maize by ZmIRT2, a Novel Iron-Regulated Transporter. Li S; Song Z; Liu X; Zhou X; Yang W; Chen J; Chen R Plant Cell Physiol; 2022 Apr; 63(4):521-534. PubMed ID: 35137187 [TBL] [Abstract][Full Text] [Related]
8. Improving Zinc and Iron Accumulation in Maize Grains Using the Zinc and Iron Transporter ZmZIP5. Li S; Liu X; Zhou X; Li Y; Yang W; Chen R Plant Cell Physiol; 2019 Sep; 60(9):2077-2085. PubMed ID: 31165152 [TBL] [Abstract][Full Text] [Related]
9. Yellow stripe1. Expanded roles for the maize iron-phytosiderophore transporter. Roberts LA; Pierson AJ; Panaviene Z; Walker EL Plant Physiol; 2004 May; 135(1):112-20. PubMed ID: 15107503 [TBL] [Abstract][Full Text] [Related]
10. Effects of Rhizophagus clarus and biochar on growth, photosynthesis, nutrients, and cadmium (Cd) concentration of maize (Zea mays) grown in Cd-spiked soil. Rafique M; Ortas I; Rizwan M; Sultan T; Chaudhary HJ; Işik M; Aydin O Environ Sci Pollut Res Int; 2019 Jul; 26(20):20689-20700. PubMed ID: 31104234 [TBL] [Abstract][Full Text] [Related]
11. Is there a strategy I iron uptake mechanism in maize? Li S; Zhou X; Chen J; Chen R Plant Signal Behav; 2018 Apr; 13(4):e1161877. PubMed ID: 27018765 [TBL] [Abstract][Full Text] [Related]
12. Transcriptional and physiological analyses of Fe deficiency response in maize reveal the presence of Strategy I components and Fe/P interactions. Zanin L; Venuti S; Zamboni A; Varanini Z; Tomasi N; Pinton R BMC Genomics; 2017 Feb; 18(1):154. PubMed ID: 28193158 [TBL] [Abstract][Full Text] [Related]
13. Uptake of atrazine and cadmium from soil by maize (Zea mays L.) in association with the arbuscular mycorrhizal fungus Glomus etunicatum. Huang H; Zhang S; Chen BD; Wu N; Shan XQ; Christy P J Agric Food Chem; 2006 Dec; 54(25):9377-82. PubMed ID: 17147421 [TBL] [Abstract][Full Text] [Related]
14. Cadmium inhibits the induction of high-affinity nitrate uptake in maize (Zea mays L.) roots. Rizzardo C; Tomasi N; Monte R; Varanini Z; Nocito FF; Cesco S; Pinton R Planta; 2012 Dec; 236(6):1701-12. PubMed ID: 22983671 [TBL] [Abstract][Full Text] [Related]
15. A putative function for the arabidopsis Fe-Phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Schaaf G; Schikora A; Häberle J; Vert G; Ludewig U; Briat JF; Curie C; von Wirén N Plant Cell Physiol; 2005 May; 46(5):762-74. PubMed ID: 15753101 [TBL] [Abstract][Full Text] [Related]
16. The monokaryotic filamentous fungus Ustilago sp. HFJ311 promotes plant growth and reduces Cd accumulation by enhancing Fe transportation and auxin biosynthesis. Wang S; Na X; Pu M; Song Y; Li J; Li K; Cheng Z; He X; Zhang C; Liang C; Wang X; Bi Y J Hazard Mater; 2024 Sep; 477():135423. PubMed ID: 39106721 [TBL] [Abstract][Full Text] [Related]
17. Characterization of AMT-mediated high-affinity ammonium uptake in roots of maize (Zea mays L.). Gu R; Duan F; An X; Zhang F; von Wirén N; Yuan L Plant Cell Physiol; 2013 Sep; 54(9):1515-24. PubMed ID: 23832511 [TBL] [Abstract][Full Text] [Related]
18. Abscisic acid (ABA)-importing transporter 1 (AIT1) contributes to the inhibition of Cd accumulation via exogenous ABA application in Arabidopsis. Pan W; You Y; Shentu JL; Weng YN; Wang ST; Xu QR; Liu HJ; Du ST J Hazard Mater; 2020 Jun; 391():122189. PubMed ID: 32044630 [TBL] [Abstract][Full Text] [Related]
19. Glutathione-induced alleviation of cadmium toxicity in Zea mays. Li M; Hao P; Cao F Plant Physiol Biochem; 2017 Oct; 119():240-249. PubMed ID: 28917143 [TBL] [Abstract][Full Text] [Related]
20. Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice. Takahashi R; Ishimaru Y; Nakanishi H; Nishizawa NK Plant Signal Behav; 2011 Nov; 6(11):1813-6. PubMed ID: 22067109 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]