BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31433648)

  • 1. Single-Molecule Force Spectroscopy Reveals that Iron-Ligand Bonds Modulate Proteins in Different Modes.
    Yuan G; Liu H; Ma Q; Li X; Nie J; Zuo J; Zheng P
    J Phys Chem Lett; 2019 Sep; 10(18):5428-5433. PubMed ID: 31433648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Molecule Force Spectroscopy Reveals that the Fe-N Bond Enables Multiple Rupture Pathways of the 2Fe2S Cluster in a MitoNEET Monomer.
    Song G; Ding X; Liu H; Yuan G; Tian F; Shi S; Yang Y; Li G; Zheng P
    Anal Chem; 2020 Nov; 92(21):14783-14789. PubMed ID: 33048522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic characterization of the [Fe(His)(4)(Cys)] site in 2Fe-superoxide reductase from Desulfovibrio vulgaris.
    Clay MD; Emerson JP; Coulter ED; Kurtz DM; Johnson MK
    J Biol Inorg Chem; 2003 Jul; 8(6):671-82. PubMed ID: 12764688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical Unfolding Pathway of the High-Potential Iron-Sulfur Protein Revealed by Single-Molecule Atomic Force Microscopy: Toward a General Unfolding Mechanism for Iron-sulfur Proteins.
    Li J; Li H
    J Phys Chem B; 2018 Oct; 122(40):9340-9349. PubMed ID: 30212202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mössbauer characterization of an unusual high-spin side-on peroxo-Fe3+ species in the active site of superoxide reductase from Desulfoarculus Baarsii. Density functional calculations on related models.
    Horner O; Mouesca JM; Oddou JL; Jeandey C; Nivière V; Mattioli TA; Mathé C; Fontecave M; Maldivi P; Bonville P; Halfen JA; Latour JM
    Biochemistry; 2004 Jul; 43(27):8815-25. PubMed ID: 15236590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic studies of Pyrococcus furiosus superoxide reductase: implications for active-site structures and the catalytic mechanism.
    Clay MD; Jenney FE; Hagedoorn PL; George GN; Adams MW; Johnson MK
    J Am Chem Soc; 2002 Feb; 124(5):788-805. PubMed ID: 11817955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometries and electronic structures of cyanide adducts of the non-heme iron active site of superoxide reductases: vibrational and ENDOR studies.
    Clay MD; Yang TC; Jenney FE; Kung IY; Cosper CA; Krishnan R; Kurtz DM; Adams MW; Hoffman BM; Johnson MK
    Biochemistry; 2006 Jan; 45(2):427-38. PubMed ID: 16401073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density functional theory applied to a difference in pathways taken by the enzymes cytochrome P450 and superoxide reductase: spin States of ferric hydroperoxo intermediates and hydrogen bonds from water.
    Surawatanawong P; Tye JW; Hall MB
    Inorg Chem; 2010 Jan; 49(1):188-98. PubMed ID: 19968237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational tuning of the thiolate donor in model complexes of superoxide reductase: direct evidence for a trans influence in Fe(III)-OOR complexes.
    Namuswe F; Kasper GD; Sarjeant AA; Hayashi T; Krest CM; Green MT; Moënne-Loccoz P; Goldberg DP
    J Am Chem Soc; 2008 Oct; 130(43):14189-200. PubMed ID: 18837497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational study of the non-heme iron active site in superoxide reductase and its reaction with superoxide.
    Silaghi-Dumitrescu R; Silaghi-Dumitrescu I; Coulter ED; Kurtz DM
    Inorg Chem; 2003 Jan; 42(2):446-56. PubMed ID: 12693226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical Unfolding and Refolding of Single Membrane Proteins by Atomic Force Microscopy.
    Ritzmann N; Thoma J
    Methods Mol Biol; 2020; 2127():359-372. PubMed ID: 32112333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single molecule force spectroscopy: a new tool for bioinorganic chemistry.
    Li H; Zheng P
    Curr Opin Chem Biol; 2018 Apr; 43():58-67. PubMed ID: 29223008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fe(3+)-eta(2)-peroxo species in superoxide reductase from Treponema pallidum. Comparison with Desulfoarculus baarsii.
    Mathé C; Nivière V; Houée-Levin C; Mattioli TA
    Biophys Chem; 2006 Jan; 119(1):38-48. PubMed ID: 16084640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox-dependent structural changes in the superoxide reductase from Desulfoarculus baarsii and Treponema pallidum: a FTIR study.
    Berthomieu C; Dupeyrat F; Fontecave M; Verméglio A; Nivière V
    Biochemistry; 2002 Aug; 41(32):10360-8. PubMed ID: 12162752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treponema denticola superoxide reductase: in vivo role, in vitro reactivities, and a novel [Fe(Cys)(4)] site.
    Caranto JD; Gebhardt LL; MacGowan CE; Limberger RJ; Kurtz DM
    Biochemistry; 2012 Jul; 51(28):5601-10. PubMed ID: 22715932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical unfolding of a β-barrel membrane protein by single-molecule force spectroscopy.
    Chen H; Song G; Zhang Y; Ni D; Zhang X; Huang Y; Lou J
    Sci China Life Sci; 2021 Feb; 64(2):334-336. PubMed ID: 32737852
    [No Abstract]   [Full Text] [Related]  

  • 17. Resonance Raman characterization of the mononuclear iron active-site vibrations and putative electron transport pathways in Pyrococcus furiosus superoxide reductase.
    Clay MD; Jenney FE; Noh HJ; Hagedoorn PL; Adams MW; Johnson MK
    Biochemistry; 2002 Aug; 41(31):9833-41. PubMed ID: 12146949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Molecule Force Spectroscopy Reveals Stability of mitoNEET and its [2Fe2Se] Cluster in Weakly Acidic and Basic Solutions.
    Nie JY; Song GB; Deng YB; Zheng P
    ChemistryOpen; 2022 May; 11(5):e202200056. PubMed ID: 35608094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A low-spin alkylperoxo-iron(III) complex with weak Fe-O and O-O bonds: implications for the mechanism of superoxide reductase.
    Krishnamurthy D; Kasper GD; Namuswe F; Kerber WD; Narducci Sarjeant AA; Moënne-Loccoz P; Goldberg DP
    J Am Chem Soc; 2006 Nov; 128(44):14222-3. PubMed ID: 17076472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single molecule force spectroscopy reveals that iron is released from the active site of rubredoxin by a stochastic mechanism.
    Zheng P; Takayama SJ; Mauk AG; Li H
    J Am Chem Soc; 2013 May; 135(21):7992-8000. PubMed ID: 23627554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.