These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. A lifting line model to investigate the influence of tip feathers on wing performance. Fluck M; Crawford C Bioinspir Biomim; 2014 Nov; 9(4):046017. PubMed ID: 25418986 [TBL] [Abstract][Full Text] [Related]
23. Numerical Simulation of the Transient Flow around the Combined Morphing Leading-Edge and Trailing-Edge Airfoil. Bashir M; Negahban MH; Botez RM; Wong T Biomimetics (Basel); 2024 Feb; 9(2):. PubMed ID: 38392154 [TBL] [Abstract][Full Text] [Related]
24. Soft biohybrid morphing wings with feathers underactuated by wrist and finger motion. Chang E; Matloff LY; Stowers AK; Lentink D Sci Robot; 2020 Jan; 5(38):. PubMed ID: 33022590 [TBL] [Abstract][Full Text] [Related]
26. Air-permeable hole-pattern and nose-droop control improve aerodynamic performance of primary feathers. Eder H; Fiedler W; Pascoe X J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Jan; 197(1):109-17. PubMed ID: 20938776 [TBL] [Abstract][Full Text] [Related]
27. Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings. Fu J; Liu X; Shyy W; Qiu H Bioinspir Biomim; 2018 Mar; 13(3):036001. PubMed ID: 29372888 [TBL] [Abstract][Full Text] [Related]
28. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil. Wang Y; Zheng X; Hu R; Wang P PLoS One; 2016; 11(9):e0163443. PubMed ID: 27658310 [TBL] [Abstract][Full Text] [Related]
29. Aerodynamics of the flying snake Chrysopelea paradisi: how a bluff body cross-sectional shape contributes to gliding performance. Holden D; Socha JJ; Cardwell ND; Vlachos PP J Exp Biol; 2014 Feb; 217(Pt 3):382-94. PubMed ID: 24477611 [TBL] [Abstract][Full Text] [Related]
30. The function of the alula in avian flight. Lee SI; Kim J; Park H; Jabłoński PG; Choi H Sci Rep; 2015 May; 5():9914. PubMed ID: 25951056 [TBL] [Abstract][Full Text] [Related]
31. Optimal design of aeroacoustic airfoils with owl-inspired trailing-edge serrations. Zhao M; Cao H; Zhang M; Liao C; Zhou T Bioinspir Biomim; 2021 Jul; 16(5):. PubMed ID: 34020442 [TBL] [Abstract][Full Text] [Related]
32. Flow Control around the UAS-S45 Pitching Airfoil Using a Dynamically Morphing Leading Edge (DMLE): A Numerical Study. Bashir M; Zonzini N; Botez RM; Ceruti A; Wong T Biomimetics (Basel); 2023 Jan; 8(1):. PubMed ID: 36810382 [TBL] [Abstract][Full Text] [Related]
33. Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight. Wang J; Ren Y; Li C; Dong H Bioinspir Biomim; 2019 Jun; 14(4):046010. PubMed ID: 31096194 [TBL] [Abstract][Full Text] [Related]
34. A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight. Vargas A; Mittal R; Dong H Bioinspir Biomim; 2008 Jun; 3(2):026004. PubMed ID: 18503106 [TBL] [Abstract][Full Text] [Related]
35. The PELskin project-part V: towards the control of the flow around aerofoils at high angle of attack using a self-activated deployable flap. Rosti ME; Kamps L; Bruecker C; Omidyeganeh M; Pinelli A Meccanica; 2017; 52(8):1811-1824. PubMed ID: 28529384 [TBL] [Abstract][Full Text] [Related]
36. Towards silent and efficient flight by combining bioinspired owl feather serrations with cicada wing geometry. Wei Z; Wang S; Farris S; Chennuri N; Wang N; Shinsato S; Demir K; Horii M; Gu GX Nat Commun; 2024 May; 15(1):4337. PubMed ID: 38773081 [TBL] [Abstract][Full Text] [Related]
37. Computational Investigations on the Effects of Gurney Flap on Airfoil Aerodynamics. Jain S; Sitaram N; Krishnaswamy S Int Sch Res Notices; 2015; 2015():402358. PubMed ID: 27347517 [TBL] [Abstract][Full Text] [Related]
38. Parameter study of simplified dragonfly airfoil geometry at Reynolds number of 6000. Levy DE; Seifert A J Theor Biol; 2010 Oct; 266(4):691-702. PubMed ID: 20673771 [TBL] [Abstract][Full Text] [Related]
39. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion. Sun M; Wu JH J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674 [TBL] [Abstract][Full Text] [Related]
40. The role of the leading edge vortex in lift augmentation of steadily revolving wings: a change in perspective. Nabawy MRA; Crowther WJ J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28747395 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]