These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 31434057)

  • 41. An aerodynamic model for insect flapping wings in forward flight.
    Han JS; Chang JW; Han JH
    Bioinspir Biomim; 2017 Mar; 12(3):036004. PubMed ID: 28362636
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds.
    Hedrick TL; Usherwood JR; Biewener AA
    J Exp Biol; 2004 Apr; 207(Pt 10):1689-702. PubMed ID: 15073202
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings.
    Zhao L; Deng X; Sane SP
    Bioinspir Biomim; 2011 Sep; 6(3):036007. PubMed ID: 21852729
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Control of leading-edge separation on bioinspired airfoil with fluttering coverts.
    Ma X; Gong X; Tang Z; Jiang N
    Phys Rev E; 2022 Feb; 105(2-2):025107. PubMed ID: 35291149
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optimal pitching axis location of flapping wings for efficient hovering flight.
    Wang Q; Goosen JFL; van Keulen F
    Bioinspir Biomim; 2017 Sep; 12(5):056001. PubMed ID: 28632144
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Folding in and out: passive morphing in flapping wings.
    Stowers AK; Lentink D
    Bioinspir Biomim; 2015 Mar; 10(2):025001. PubMed ID: 25807583
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Unsteady aerodynamic forces of a flapping wing.
    Wu JH; Sun M
    J Exp Biol; 2004 Mar; 207(Pt 7):1137-50. PubMed ID: 14978056
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Avian whiffling-inspired gaps provide an alternative method for roll control.
    Sigrest P; Inman DJ
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35609597
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Flow structure modifications by leading-edge tubercles on a 3D wing.
    Kim H; Kim J; Choi H
    Bioinspir Biomim; 2018 Oct; 13(6):066011. PubMed ID: 30362460
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Flight feather attachment in rock pigeons (Columba livia): covert feathers and smooth muscle coordinate a morphing wing.
    Hieronymus TL
    J Anat; 2016 Nov; 229(5):631-656. PubMed ID: 27320170
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Computational and experimental study on the aerodynamic performance of NACA 4412 airfoil with slot and groove.
    Rayhan AM; Hossain MS; Mim RH; Ali M
    Heliyon; 2024 Jun; 10(11):e31595. PubMed ID: 38845868
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.
    Kruyt JW; van Heijst GF; Altshuler DL; Lentink D
    J R Soc Interface; 2015 Apr; 12(105):. PubMed ID: 25788539
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On the dynamics of perching manoeuvres with low-aspect-ratio planforms.
    Fernando JN; Rival DE
    Bioinspir Biomim; 2017 Jun; 12(4):046007. PubMed ID: 28631616
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Numerical Simulation of a Passive Control of the Flow Around an Aerofoil Using a Flexible, Self Adaptive Flaplet.
    Rosti ME; Omidyeganeh M; Pinelli A
    Flow Turbul Combust; 2018; 100(4):1111-1143. PubMed ID: 30069151
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Scaling of bird wings and feathers for efficient flight.
    Sullivan TN; Meyers MA; Arzt E
    Sci Adv; 2019 Jan; 5(1):eaat4269. PubMed ID: 30746435
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight.
    Feo TJ; Field DJ; Prum RO
    Proc Biol Sci; 2015 Mar; 282(1803):20142864. PubMed ID: 25673687
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An experimental comparative study of the efficiency of twisted and flat flapping wings during hovering flight.
    Phan HV; Truong QT; Park HC
    Bioinspir Biomim; 2017 Apr; 12(3):036009. PubMed ID: 28281465
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight.
    Portugal SJ; Hubel TY; Fritz J; Heese S; Trobe D; Voelkl B; Hailes S; Wilson AM; Usherwood JR
    Nature; 2014 Jan; 505(7483):399-402. PubMed ID: 24429637
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hovering and intermittent flight in birds.
    Tobalske BW
    Bioinspir Biomim; 2010 Dec; 5(4):045004. PubMed ID: 21098953
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of outer wing separation on lift and thrust generation in a flapping wing system.
    Mahardika N; Viet NQ; Park HC
    Bioinspir Biomim; 2011 Sep; 6(3):036006. PubMed ID: 21852715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.