These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 31434057)
61. A computational investigation of lift generation and power expenditure of Pratt's roundleaf bat (Hipposideros pratti) in forward flight. Windes P; Fan X; Bender M; Tafti DK; Müller R PLoS One; 2018; 13(11):e0207613. PubMed ID: 30485321 [TBL] [Abstract][Full Text] [Related]
62. Research of biomimetic corrugation on the blade flutter suppression in large-scale wind turbine systems. Zhang L; Wang K; Zhang X; Liu S; Jing Z; Lu J; Cui X; Liu J Bioinspir Biomim; 2024 May; 19(4):. PubMed ID: 38722361 [TBL] [Abstract][Full Text] [Related]
63. Lift calculations based on accepted wake models for animal flight are inconsistent and sensitive to vortex dynamics. Gutierrez E; Quinn DB; Chin DD; Lentink D Bioinspir Biomim; 2016 Dec; 12(1):016004. PubMed ID: 27921999 [TBL] [Abstract][Full Text] [Related]
64. Reynolds number dependency of an insect-based flapping wing. Han JS; Chang JW; Kim ST Bioinspir Biomim; 2014; 9(4):046012. PubMed ID: 25381677 [TBL] [Abstract][Full Text] [Related]
65. A bio-inspired study on tidal energy extraction with flexible flapping wings. Liu W; Xiao Q; Cheng F Bioinspir Biomim; 2013 Sep; 8(3):036011. PubMed ID: 23981650 [TBL] [Abstract][Full Text] [Related]
66. Biplane wing planform and flight performance of the feathered dinosaur Microraptor gui. Chatterjee S; Templin RJ Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1576-80. PubMed ID: 17242354 [TBL] [Abstract][Full Text] [Related]
67. A lightweight, biological structure with tailored stiffness: The feather vane. Sullivan TN; Pissarenko A; Herrera SA; Kisailus D; Lubarda VA; Meyers MA Acta Biomater; 2016 Sep; 41():27-39. PubMed ID: 27184403 [TBL] [Abstract][Full Text] [Related]
68. Numerical assessment of wake-based estimation of instantaneous lift in flapping flight of large birds. Colognesi V; Ronsse R; Chatelain P PLoS One; 2023; 18(5):e0284714. PubMed ID: 37141190 [TBL] [Abstract][Full Text] [Related]
69. Preliminary assessment of the NACA0021 trailing edge wedge for wind turbine application. Abdalkarem AAM; Ansaf R; Muzammil WK; Ibrahim A; Harun Z; Fazlizan A Heliyon; 2023 Nov; 9(11):e21193. PubMed ID: 37942161 [TBL] [Abstract][Full Text] [Related]
70. On the Estimation of Time Dependent Lift of a European Starling (Sturnus vulgaris) during Flapping Flight. Stalnov O; Ben-Gida H; Kirchhefer AJ; Guglielmo CG; Kopp GA; Liberzon A; Gurka R PLoS One; 2015; 10(9):e0134582. PubMed ID: 26394213 [TBL] [Abstract][Full Text] [Related]
71. Energy considerations and flow fields over whiffling-inspired wings. Sigrest P; Wu E; Inman DJ Bioinspir Biomim; 2023 May; 18(4):. PubMed ID: 37141892 [TBL] [Abstract][Full Text] [Related]
72. Aerodynamic characteristics of flying fish in gliding flight. Park H; Choi H J Exp Biol; 2010 Oct; 213(Pt 19):3269-79. PubMed ID: 20833919 [TBL] [Abstract][Full Text] [Related]
73. Robust post-stall perching with a simple fixed-wing glider using LQR-Trees. Moore J; Cory R; Tedrake R Bioinspir Biomim; 2014 Jun; 9(2):025013. PubMed ID: 24852406 [TBL] [Abstract][Full Text] [Related]
74. Effects of Reynolds Number and Distribution on Passive Flow Control in Owl-Inspired Leading-Edge Serrations. Rao C; Liu H Integr Comp Biol; 2020 Nov; 60(5):1135-1146. PubMed ID: 32805051 [TBL] [Abstract][Full Text] [Related]
75. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method. Tay WB; van Oudheusden BW; Bijl H Bioinspir Biomim; 2014 Sep; 9(3):036001. PubMed ID: 24584155 [TBL] [Abstract][Full Text] [Related]
76. Passive mechanism of pitch recoil in flapping insect wings. Ishihara D; Horie T Bioinspir Biomim; 2016 Dec; 12(1):016008. PubMed ID: 27995899 [TBL] [Abstract][Full Text] [Related]
77. Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development. Heers AM; Baier DB; Jackson BE; Dial KP PLoS One; 2016; 11(4):e0153446. PubMed ID: 27100994 [TBL] [Abstract][Full Text] [Related]
79. Numerical investigation on the aerodynamic efficiency of bio-inspired corrugated and cambered airfoils in ground effect. Abdizadeh GR; Farokhinejad M; Ghasemloo S Sci Rep; 2022 Nov; 12(1):19117. PubMed ID: 36351992 [TBL] [Abstract][Full Text] [Related]
80. Aerodynamic effects of deviating motion of flapping wings in hovering flight. Kim HY; Han JS; Han JH Bioinspir Biomim; 2019 Feb; 14(2):026006. PubMed ID: 30616233 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]