These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31434068)

  • 21. Hydrodynamic pressure sensing with an artificial lateral line in steady and unsteady flows.
    Venturelli R; Akanyeti O; Visentin F; Ježov J; Chambers LD; Toming G; Brown J; Kruusmaa M; Megill WM; Fiorini P
    Bioinspir Biomim; 2012 Sep; 7(3):036004. PubMed ID: 22498729
    [TBL] [Abstract][Full Text] [Related]  

  • 22. What We Can Learn from Artificial Lateral Line Sensor Arrays.
    Klein AT; Kaldenbach F; Rüter A; Bleckmann H
    Adv Exp Med Biol; 2016; 875():539-45. PubMed ID: 26611002
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Function of lateral line canal morphology.
    Klein A; Bleckmann H
    Integr Zool; 2015 Jan; 10(1):111-21. PubMed ID: 24920149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Artificial lateral line based local sensing between two adjacent robotic fish.
    Zheng X; Wang C; Fan R; Xie G
    Bioinspir Biomim; 2017 Nov; 13(1):016002. PubMed ID: 28949301
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fish-inspired robots: design, sensing, actuation, and autonomy--a review of research.
    Raj A; Thakur A
    Bioinspir Biomim; 2016 Apr; 11(3):031001. PubMed ID: 27073001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Highly Sensitive Deep-Sea Hydrodynamic Pressure Sensor Inspired by Fish Lateral Line.
    Hu X; Ma Z; Gong Z; Zhao F; Guo S; Zhang D; Jiang Y
    Biomimetics (Basel); 2024 Mar; 9(3):. PubMed ID: 38534875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Man-made flows from a fish's perspective: autonomous classification of turbulent fishway flows with field data collected using an artificial lateral line.
    Tuhtan JA; Fuentes-Perez JF; Toming G; Schneider M; Schwarzenberger R; Schletterer M; Kruusmaa M
    Bioinspir Biomim; 2018 May; 13(4):046006. PubMed ID: 29629711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Drag force acting on a neuromast in the fish lateral line trunk canal. I. Numerical modelling of external-internal flow coupling.
    Barbier C; Humphrey JA
    J R Soc Interface; 2009 Jul; 6(36):627-40. PubMed ID: 18926967
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of artificial water flows by the lateral line system of a benthic feeding cichlid fish.
    Schwalbe MA; Sevey BJ; Webb JF
    J Exp Biol; 2016 Apr; 219(Pt 7):1050-9. PubMed ID: 27030780
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Artificial lateral line with biomimetic neuromasts to emulate fish sensing.
    Yang Y; Nguyen N; Chen N; Lockwood M; Tucker C; Hu H; Bleckmann H; Liu C; Jones DL
    Bioinspir Biomim; 2010 Mar; 5(1):16001. PubMed ID: 20061601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-motion effects on hydrodynamic pressure sensing: part I. forward-backward motion.
    Akanyeti O; Chambers LD; Ježov J; Brown J; Venturelli R; Kruusmaa M; Megill WM; Fiorini P
    Bioinspir Biomim; 2013 Jun; 8(2):026001. PubMed ID: 23462257
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A fish perspective: detecting flow features while moving using an artificial lateral line in steady and unsteady flow.
    Chambers LD; Akanyeti O; Venturelli R; Ježov J; Brown J; Kruusmaa M; Fiorini P; Megill WM
    J R Soc Interface; 2014 Oct; 11(99):. PubMed ID: 25079867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part I: open water and heading towards a wall.
    Windsor SP; Norris SE; Cameron SM; Mallinson GD; Montgomery JC
    J Exp Biol; 2010 Nov; 213(Pt 22):3819-31. PubMed ID: 21037061
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A biomimetic underwater vehicle actuated by waves with ionic polymer-metal composite soft sensors.
    Shen Q; Wang T; Kim KJ
    Bioinspir Biomim; 2015 Sep; 10(5):055007. PubMed ID: 26414228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bio-inspired flexible joints with passive feathering for robotic fish pectoral fins.
    Behbahani SB; Tan X
    Bioinspir Biomim; 2016 May; 11(3):036009. PubMed ID: 27144946
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drag force acting on a neuromast in the fish lateral line trunk canal. II. Analytical modelling of parameter dependencies.
    Humphrey JA
    J R Soc Interface; 2009 Jul; 6(36):641-53. PubMed ID: 18926966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Model-based observer and feedback control design for a rigid Joukowski foil in a Kármán vortex street.
    Free BA; Paley DA
    Bioinspir Biomim; 2018 Mar; 13(3):035001. PubMed ID: 29355109
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Object localization through the lateral line system of fish: theory and experiment.
    Goulet J; Engelmann J; Chagnaud BP; Franosch JM; Suttner MD; van Hemmen JL
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Jan; 194(1):1-17. PubMed ID: 18060550
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modelling of a biologically inspired robotic fish driven by compliant parts.
    El Daou H; Salumäe T; Chambers LD; Megill WM; Kruusmaa M
    Bioinspir Biomim; 2014 Mar; 9(1):016010. PubMed ID: 24451164
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of viscous hydrodynamics on the fish lateral-line system.
    Windsor SP; McHenry MJ
    Integr Comp Biol; 2009 Dec; 49(6):691-701. PubMed ID: 21665851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.