These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 31434488)
1. Placeholder Strategy with Upconversion Nanoparticles-Eriochrome Black T Conjugate for a Colorimetric Assay of an Anthrax Biomarker. Cheng ZH; Liu X; Zhang SQ; Yang T; Chen ML; Wang JH Anal Chem; 2019 Sep; 91(18):12094-12099. PubMed ID: 31434488 [TBL] [Abstract][Full Text] [Related]
2. Eriochrome Black T-Eu Yilmaz MD; Oktem HA Anal Chem; 2018 Mar; 90(6):4221-4225. PubMed ID: 29488375 [TBL] [Abstract][Full Text] [Related]
3. A design strategy of dual-ratiomentric optical probe based on europium-doped carbon dots for colorimetric and fluorescent visual detection of anthrax biomarker. Zhou Q; Fang Y; Li J; Hong D; Zhu P; Chen S; Tan K Talanta; 2021 Jan; 222():121548. PubMed ID: 33167252 [TBL] [Abstract][Full Text] [Related]
4. Perturbing Tandem Energy Transfer in Luminescent Heterobinuclear Lanthanide Coordination Polymer Nanoparticles Enables Real-Time Monitoring of Release of the Anthrax Biomarker from Bacterial Spores. Gao N; Zhang Y; Huang P; Xiang Z; Wu FY; Mao L Anal Chem; 2018 Jun; 90(11):7004-7011. PubMed ID: 29701058 [TBL] [Abstract][Full Text] [Related]
5. Rapid and facile ratiometric detection of an anthrax biomarker by regulating energy transfer process in bio-metal-organic framework. Zhang Y; Li B; Ma H; Zhang L; Zheng Y Biosens Bioelectron; 2016 Nov; 85():287-293. PubMed ID: 27183278 [TBL] [Abstract][Full Text] [Related]
6. In Situ Incorporation of Fluorophores in Zeolitic Imidazolate Framework-8 (ZIF-8) for Ratio-Dependent Detecting a Biomarker of Anthrax Spores. Li X; Luo J; Deng L; Ma F; Yang M Anal Chem; 2020 May; 92(10):7114-7122. PubMed ID: 32329601 [TBL] [Abstract][Full Text] [Related]
7. Stimulus Response of TPE-TS@Eu/GMP ICPs: Toward Colorimetric Sensing of an Anthrax Biomarker with Double Ratiometric Fluorescence and Its Coffee Ring Test Kit for Point-of-Use Application. Huang C; Ma R; Luo Y; Shi G; Deng J; Zhou T Anal Chem; 2020 Oct; 92(19):12934-12942. PubMed ID: 32854503 [TBL] [Abstract][Full Text] [Related]
8. Integrated ratiometric fluorescence probe-based acoustofluidic platform for visual detection of anthrax biomarker. Wu J; Chen P; Chen J; Ye X; Cao S; Sun C; Jin Y; Zhang L; Du S Biosens Bioelectron; 2022 Oct; 214():114538. PubMed ID: 35820251 [TBL] [Abstract][Full Text] [Related]
9. A turn-on luminescence probe for highly selective detection of an anthrax biomarker. Liu X; Chen D; Wang C; Tian N; Li Z; Zhang Y; Ding ZJ Luminescence; 2020 Jun; 35(4):601-607. PubMed ID: 31916365 [TBL] [Abstract][Full Text] [Related]
10. Dual lanthanide-doped complexes: the development of a time-resolved ratiometric fluorescent probe for anthrax biomarker and a paper-based visual sensor. Wang QX; Xue SF; Chen ZH; Ma SH; Zhang S; Shi G; Zhang M Biosens Bioelectron; 2017 Aug; 94():388-393. PubMed ID: 28324858 [TBL] [Abstract][Full Text] [Related]
11. A Eu Yang H; Lu F; Zhan X; Tian M; Yuan Z; Lu C Talanta; 2020 Feb; 208():120368. PubMed ID: 31816769 [TBL] [Abstract][Full Text] [Related]
12. Fluorescent detection of dipicolinic acid as a biomarker in bacterial spores employing terbium ion-coordinated magnetite nanoparticles. Koo TM; Ko MJ; Park BC; Kim MS; Kim YK J Hazard Mater; 2021 Apr; 408():124870. PubMed ID: 33387720 [TBL] [Abstract][Full Text] [Related]
13. Europium-modified carbon nitride nanosheets for smartphone-based fluorescence sensitive recognition of anthrax biomarker dipicolinic acid. Yuan M; Jin Y; Yu L; Bu Y; Sun M; Yuan C; Wang S Food Chem; 2023 Jan; 398():133884. PubMed ID: 35964575 [TBL] [Abstract][Full Text] [Related]
14. Gold nanoparticle-based colorimetric sensing of dipicolinic acid from complex samples. Baig MMF; Chen YC Anal Bioanal Chem; 2018 Feb; 410(6):1805-1815. PubMed ID: 29368149 [TBL] [Abstract][Full Text] [Related]
15. Magnetic separation-enhanced photoluminescence detection of dipicolinic acid and quenching detection of Cu(II) ions. Kim T; Jeon H; Lee JR; Kim D Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 305():123501. PubMed ID: 37839210 [TBL] [Abstract][Full Text] [Related]
16. Determination of 2, 6-dipicolinic acid as an Anthrax biomarker based on the enhancement of copper nanocluster fluorescence by reversible aggregation-induced emission. Ma F; Deng L; Wang T; Zhang A; Yang M; Li X; Chen X Mikrochim Acta; 2023 Jul; 190(8):291. PubMed ID: 37458835 [TBL] [Abstract][Full Text] [Related]
17. A Monostyryl Boradiazaindacene (BODIPY)-based lanthanide-free colorimetric and fluorogenic probe for sequential sensing of copper (II) ions and dipicolinic acid as a biomarker of bacterial endospores. Cetinkaya Y; Yurt MNZ; Avni Oktem H; Yilmaz MD J Hazard Mater; 2019 Sep; 377():299-304. PubMed ID: 31173979 [TBL] [Abstract][Full Text] [Related]
18. Colorimetric identification of lanthanide ions based on two carboxylic acids as an artificial tongue. Zhang C; Huang J; Wei W; Chen Z Analyst; 2020 May; 145(9):3359-3363. PubMed ID: 32232246 [TBL] [Abstract][Full Text] [Related]
19. A highly selective lanthanide-containing probe for ratiometric luminescence detection of an anthrax biomarker. Liu X; Li B; Xu Y; Li Z; Zhang Y; Ding ZJ; Cui H; Wang J; Hou HB; Li H Dalton Trans; 2019 Jun; 48(22):7714-7719. PubMed ID: 31065665 [TBL] [Abstract][Full Text] [Related]
20. Fluorescent silica nanoparticles as nano-chemosensors for the sequential detection of Pb Cetinkaya YN; Bulut O; Oktem HA; Yilmaz MD Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123222. PubMed ID: 37542871 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]