BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 31434908)

  • 1. Support Vector Machine model for hERG inhibitory activities based on the integrated hERG database using descriptor selection by NSGA-II.
    Ogura K; Sato T; Yuki H; Honma T
    Sci Rep; 2019 Aug; 9(1):12220. PubMed ID: 31434908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive support vector machine binary hERG classification model based on extensive but biased end point hERG data sets.
    Shen MY; Su BH; Esposito EX; Hopfinger AJ; Tseng YJ
    Chem Res Toxicol; 2011 Jun; 24(6):934-49. PubMed ID: 21504223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of an integrated database for hERG blocking small molecules.
    Sato T; Yuki H; Ogura K; Honma T
    PLoS One; 2018; 13(7):e0199348. PubMed ID: 29979714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ADMET Evaluation in Drug Discovery. 16. Predicting hERG Blockers by Combining Multiple Pharmacophores and Machine Learning Approaches.
    Wang S; Sun H; Liu H; Li D; Li Y; Hou T
    Mol Pharm; 2016 Aug; 13(8):2855-66. PubMed ID: 27379394
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Zhang C; Zhou Y; Gu S; Wu Z; Wu W; Liu C; Wang K; Liu G; Li W; Lee PW; Tang Y
    Toxicol Res (Camb); 2016 Mar; 5(2):570-582. PubMed ID: 30090371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico binary classification QSAR models based on 4D-fingerprints and MOE descriptors for prediction of hERG blockage.
    Su BH; Shen MY; Esposito EX; Hopfinger AJ; Tseng YJ
    J Chem Inf Model; 2010 Jul; 50(7):1304-18. PubMed ID: 20565102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of hERG potassium channel blockage using ensemble learning methods and molecular fingerprints.
    Liu M; Zhang L; Li S; Yang T; Liu L; Zhao J; Liu H
    Toxicol Lett; 2020 Oct; 332():88-96. PubMed ID: 32629073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and evaluation of an in silico model for hERG binding.
    Song M; Clark M
    J Chem Inf Model; 2006; 46(1):392-400. PubMed ID: 16426073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compilation and physicochemical classification analysis of a diverse hERG inhibition database.
    Didziapetris R; Lanevskij K
    J Comput Aided Mol Des; 2016 Dec; 30(12):1175-1188. PubMed ID: 27783199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of HIV-1 Protease Inhibitors by Machine Learning Methods.
    Li Y; Tian Y; Qin Z; Yan A
    ACS Omega; 2018 Nov; 3(11):15837-15849. PubMed ID: 30556015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. hERG classification model based on a combination of support vector machine method and GRIND descriptors.
    Li Q; Jørgensen FS; Oprea T; Brunak S; Taboureau O
    Mol Pharm; 2008; 5(1):117-27. PubMed ID: 18197627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Prediction of Blood-Brain Barrier Permeability Through Machine Learning with Combined Use of Molecular Property-Based Descriptors and Fingerprints.
    Yuan Y; Zheng F; Zhan CG
    AAPS J; 2018 Mar; 20(3):54. PubMed ID: 29564576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive toxicology modeling: protocols for exploring hERG classification and Tetrahymena pyriformis end point predictions.
    Su BH; Tu YS; Esposito EX; Tseng YJ
    J Chem Inf Model; 2012 Jun; 52(6):1660-73. PubMed ID: 22642982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospective validation of a comprehensive in silico hERG model and its applications to commercial compound and drug databases.
    Doddareddy MR; Klaasse EC; Shagufta ; Ijzerman AP; Bender A
    ChemMedChem; 2010 May; 5(5):716-29. PubMed ID: 20349498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico prediction of major drug clearance pathways by support vector machines with feature-selected descriptors.
    Toshimoto K; Wakayama N; Kusama M; Maeda K; Sugiyama Y; Akiyama Y
    Drug Metab Dispos; 2014 Nov; 42(11):1811-9. PubMed ID: 25128502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ensemble of structure and ligand-based classification models for hERG liability profiling.
    Vittorio S; Lunghini F; Pedretti A; Vistoli G; Beccari AR
    Front Pharmacol; 2023; 14():1148670. PubMed ID: 37033661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An accurate and interpretable bayesian classification model for prediction of HERG liability.
    Sun H
    ChemMedChem; 2006 Mar; 1(3):315-22. PubMed ID: 16892366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of chemical carcinogenicity by machine learning approaches.
    Tan NX; Rao HB; Li ZR; Li XY
    SAR QSAR Environ Res; 2009; 20(1-2):27-75. PubMed ID: 19343583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting hERG channel blockers with directed message passing neural networks.
    Shan M; Jiang C; Chen J; Qin LP; Qin JJ; Cheng G
    RSC Adv; 2022 Jan; 12(6):3423-3430. PubMed ID: 35425351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Silico Models to Discriminate Compounds Inducing and Noninducing Toxic Myopathy.
    Hu X; Yan A
    Mol Inform; 2012 Jan; 31(1):27-39. PubMed ID: 27478175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.