These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
469 related articles for article (PubMed ID: 31435618)
1. Neuroprotective Approach of Anti-Cancer Microtubule Stabilizers Against Tauopathy Associated Dementia: Current Status of Clinical and Preclinical Findings. Duggal P; Mehan S J Alzheimers Dis Rep; 2019 Jul; 3(1):179-218. PubMed ID: 31435618 [TBL] [Abstract][Full Text] [Related]
2. Investigation of Low Dose Cabazitaxel Potential as Microtubule Stabilizer in Experimental Model of Alzheimer's Disease: Restoring Neuronal Cytoskeleton. Duggal P; Jadaun KS; Siqqiqui EM; Mehan S Curr Alzheimer Res; 2020; 17(7):601-615. PubMed ID: 33030130 [TBL] [Abstract][Full Text] [Related]
3. A brain-penetrant triazolopyrimidine enhances microtubule-stability, reduces axonal dysfunction and decreases tau pathology in a mouse tauopathy model. Zhang B; Yao Y; Cornec AS; Oukoloff K; James MJ; Koivula P; Trojanowski JQ; Smith AB; Lee VM; Ballatore C; Brunden KR Mol Neurodegener; 2018 Nov; 13(1):59. PubMed ID: 30404654 [TBL] [Abstract][Full Text] [Related]
4. Activity-dependent neuroprotective protein (ADNP)-end-binding protein (EB) interactions regulate microtubule dynamics toward protection against tauopathy. Ivashko-Pachima Y; Gozes I Prog Mol Biol Transl Sci; 2021; 177():65-90. PubMed ID: 33453943 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of the brain-penetrant microtubule-stabilizing agent, dictyostatin, in the PS19 tau transgenic mouse model of tauopathy. Makani V; Zhang B; Han H; Yao Y; Lassalas P; Lou K; Paterson I; Lee VM; Trojanowski JQ; Ballatore C; Smith AB; Brunden KR Acta Neuropathol Commun; 2016 Sep; 4(1):106. PubMed ID: 27687527 [TBL] [Abstract][Full Text] [Related]
6. Characterization of Brain-Penetrant Pyrimidine-Containing Molecules with Differential Microtubule-Stabilizing Activities Developed as Potential Therapeutic Agents for Alzheimer's Disease and Related Tauopathies. Kovalevich J; Cornec AS; Yao Y; James M; Crowe A; Lee VM; Trojanowski JQ; Smith AB; Ballatore C; Brunden KR J Pharmacol Exp Ther; 2016 May; 357(2):432-50. PubMed ID: 26980057 [TBL] [Abstract][Full Text] [Related]
7. Microtubule dynamics and the neurodegenerative triad of Alzheimer's disease: The hidden connection. Brandt R; Bakota L J Neurochem; 2017 Nov; 143(4):409-417. PubMed ID: 28267200 [TBL] [Abstract][Full Text] [Related]
8. The characterization of microtubule-stabilizing drugs as possible therapeutic agents for Alzheimer's disease and related tauopathies. Brunden KR; Yao Y; Potuzak JS; Ferrer NI; Ballatore C; James MJ; Hogan AM; Trojanowski JQ; Smith AB; Lee VM Pharmacol Res; 2011 Apr; 63(4):341-51. PubMed ID: 21163349 [TBL] [Abstract][Full Text] [Related]
10. A novel transgenic mouse expressing double mutant tau driven by its natural promoter exhibits tauopathy characteristics. Rosenmann H; Grigoriadis N; Eldar-Levy H; Avital A; Rozenstein L; Touloumi O; Behar L; Ben-Hur T; Avraham Y; Berry E; Segal M; Ginzburg I; Abramsky O Exp Neurol; 2008 Jul; 212(1):71-84. PubMed ID: 18490011 [TBL] [Abstract][Full Text] [Related]
11. Preliminary mechanistic insights of a brain-penetrant microtubule imaging PET ligand in a tau-knockout mouse model. Damuka N; Orr ME; Bansode AH; Krizan I; Miller M; Lee J; Macauley SL; Whitlow CT; Mintz A; Craft S; Solingapuram Sai KK EJNMMI Res; 2022 Jul; 12(1):41. PubMed ID: 35881263 [TBL] [Abstract][Full Text] [Related]
12. NAP (davunetide) preferential interaction with dynamic 3-repeat Tau explains differential protection in selected tauopathies. Ivashko-Pachima Y; Maor-Nof M; Gozes I PLoS One; 2019; 14(3):e0213666. PubMed ID: 30865715 [TBL] [Abstract][Full Text] [Related]
13. Recent therapeutic strategies targeting beta amyloid and tauopathies in Alzheimer's disease. Madav Y; Wairkar S; Prabhakar B Brain Res Bull; 2019 Mar; 146():171-184. PubMed ID: 30634016 [TBL] [Abstract][Full Text] [Related]
14. Phosphorylation Activity in the Alzheimer's Disease and Normal Brain is Modulated by Microtubule-Associated Protein, Tau in Vitro. Pant MK; V V; Amin ND; Amin N; Pant HC J Alzheimers Dis; 1999 Oct; 1(3):169-182. PubMed ID: 12214002 [TBL] [Abstract][Full Text] [Related]
16. Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer's disease and tauopathies. Ferrer I; Gomez-Isla T; Puig B; Freixes M; Ribé E; Dalfó E; Avila J Curr Alzheimer Res; 2005 Jan; 2(1):3-18. PubMed ID: 15977985 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms of neurofibrillary degeneration and the formation of neurofibrillary tangles. Iqbal K; Alonso AC; Gong CX; Khatoon S; Pei JJ; Wang JZ; Grundke-Iqbal I J Neural Transm Suppl; 1998; 53():169-80. PubMed ID: 9700655 [TBL] [Abstract][Full Text] [Related]
18. Increased acetylation of microtubules rescues human tau-induced microtubule defects and neuromuscular junction abnormalities in Mao CX; Wen X; Jin S; Zhang YQ Dis Model Mech; 2017 Oct; 10(10):1245-1252. PubMed ID: 28819043 [TBL] [Abstract][Full Text] [Related]
19. Role of Tau as a Microtubule-Associated Protein: Structural and Functional Aspects. Barbier P; Zejneli O; Martinho M; Lasorsa A; Belle V; Smet-Nocca C; Tsvetkov PO; Devred F; Landrieu I Front Aging Neurosci; 2019; 11():204. PubMed ID: 31447664 [TBL] [Abstract][Full Text] [Related]
20. Rescue of tau-induced synaptic transmission pathology by paclitaxel. Erez H; Shemesh OA; Spira ME Front Cell Neurosci; 2014; 8():34. PubMed ID: 24574970 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]