BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 31435698)

  • 1. G-protein βγ subunits as multi-functional scaffolds and transducers in G-protein-coupled receptor signaling.
    Smrcka AV; Fisher I
    Cell Mol Life Sci; 2019 Nov; 76(22):4447-4459. PubMed ID: 31435698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gβγ regulates mitotic Golgi fragmentation and G2/M cell cycle progression.
    Rajanala K; Klayman LM; Wedegaertner PB
    Mol Biol Cell; 2021 Oct; 32(20):br2. PubMed ID: 34260268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein Kinase D and Gβγ Subunits Mediate Agonist-evoked Translocation of Protease-activated Receptor-2 from the Golgi Apparatus to the Plasma Membrane.
    Jensen DD; Zhao P; Jimenez-Vargas NN; Lieu T; Gerges M; Yeatman HR; Canals M; Vanner SJ; Poole DP; Bunnett NW
    J Biol Chem; 2016 May; 291(21):11285-99. PubMed ID: 27030010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of G-protein signaling by RKTG via sequestration of the G betagamma subunit to the Golgi apparatus.
    Jiang Y; Xie X; Zhang Y; Luo X; Wang X; Fan F; Zheng D; Wang Z; Chen Y
    Mol Cell Biol; 2010 Jan; 30(1):78-90. PubMed ID: 19884349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. G protein βγ subunits directly interact with and activate phospholipase Cϵ.
    Madukwe JC; Garland-Kuntz EE; Lyon AM; Smrcka AV
    J Biol Chem; 2018 Apr; 293(17):6387-6397. PubMed ID: 29535186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G protein-coupled receptor-promoted trafficking of Gbeta1gamma2 leads to AKT activation at endosomes via a mechanism mediated by Gbeta1gamma2-Rab11a interaction.
    García-Regalado A; Guzmán-Hernández ML; Ramírez-Rangel I; Robles-Molina E; Balla T; Vázquez-Prado J; Reyes-Cruz G
    Mol Biol Cell; 2008 Oct; 19(10):4188-200. PubMed ID: 18701709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of association between activated Galpha q and Gbetagamma disrupts receptor-dependent and receptor-independent signaling.
    Evanko DS; Thiyagarajan MM; Takida S; Wedegaertner PB
    Cell Signal; 2005 Oct; 17(10):1218-28. PubMed ID: 16038796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A family of G protein βγ subunits translocate reversibly from the plasma membrane to endomembranes on receptor activation.
    Saini DK; Kalyanaraman V; Chisari M; Gautam N
    J Biol Chem; 2007 Aug; 282(33):24099-108. PubMed ID: 17581822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. G protein βγ translocation to the Golgi apparatus activates MAPK via p110γ-p101 heterodimers.
    Khater M; Wei Z; Xu X; Huang W; Lokeshwar BL; Lambert NA; Wu G
    J Biol Chem; 2021; 296():100325. PubMed ID: 33493514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Receptor-mediated reversible translocation of the G protein betagamma complex from the plasma membrane to the Golgi complex.
    Akgoz M; Kalyanaraman V; Gautam N
    J Biol Chem; 2004 Dec; 279(49):51541-4. PubMed ID: 15448129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A docking site for G protein βγ subunits on the parathyroid hormone 1 receptor supports signaling through multiple pathways.
    Mahon MJ; Bonacci TM; Divieti P; Smrcka AV
    Mol Endocrinol; 2006 Jan; 20(1):136-46. PubMed ID: 16099817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inducible Inhibition of Gβγ Reveals Localization-dependent Functions at the Plasma Membrane and Golgi.
    Klayman LM; Wedegaertner PB
    J Biol Chem; 2017 Feb; 292(5):1773-1784. PubMed ID: 27994056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. G protein betagamma complex translocation from plasma membrane to Golgi complex is influenced by receptor gamma subunit interaction.
    Akgoz M; Kalyanaraman V; Gautam N
    Cell Signal; 2006 Oct; 18(10):1758-68. PubMed ID: 16517125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of constitutive cargo transport from the trans-Golgi network to plasma membrane by Golgi-localized G protein betagamma subunits.
    Irannejad R; Wedegaertner PB
    J Biol Chem; 2010 Oct; 285(42):32393-404. PubMed ID: 20720014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. G protein betagamma subunits as targets for small molecule therapeutic development.
    Smrcka AV; Lehmann DM; Dessal AL
    Comb Chem High Throughput Screen; 2008 Jun; 11(5):382-95. PubMed ID: 18537559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seven transmembrane receptor core signaling complexes are assembled prior to plasma membrane trafficking.
    Dupré DJ; Robitaille M; Ethier N; Villeneuve LR; Mamarbachi AM; Hébert TE
    J Biol Chem; 2006 Nov; 281(45):34561-73. PubMed ID: 16959776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-canonical Golgi-compartmentalized Gβγ signaling: mechanisms, functions, and therapeutic targets.
    Xu X; Wu G
    Trends Pharmacol Sci; 2023 Feb; 44(2):98-111. PubMed ID: 36494204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gβγ translocation to the Golgi apparatus activates ARF1 to spatiotemporally regulate G protein-coupled receptor signaling to MAPK.
    Khater M; Bryant CN; Wu G
    J Biol Chem; 2021; 296():100805. PubMed ID: 34022220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All G protein βγ complexes are capable of translocation on receptor activation.
    Ajith Karunarathne WK; O'Neill PR; Martinez-Espinosa PL; Kalyanaraman V; Gautam N
    Biochem Biophys Res Commun; 2012 May; 421(3):605-11. PubMed ID: 22538369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signaling by a non-dissociated complex of G protein βγ and α subunits stimulated by a receptor-independent activator of G protein signaling, AGS8.
    Yuan C; Sato M; Lanier SM; Smrcka AV
    J Biol Chem; 2007 Jul; 282(27):19938-47. PubMed ID: 17446173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.