These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 31436043)

  • 1. A paleosol record of the evolution of Cr redox cycling and evidence for an increase in atmospheric oxygen during the Neoproterozoic.
    Colwyn DA; Sheldon ND; Maynard JB; Gaines R; Hofmann A; Wang X; Gueguen B; Asael D; Reinhard CT; Planavsky NJ
    Geobiology; 2019 Nov; 17(6):579-593. PubMed ID: 31436043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes.
    Frei R; Gaucher C; Poulton SW; Canfield DE
    Nature; 2009 Sep; 461(7261):250-3. PubMed ID: 19741707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Earth history. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals.
    Planavsky NJ; Reinhard CT; Wang X; Thomson D; McGoldrick P; Rainbird RH; Johnson T; Fischer WW; Lyons TW
    Science; 2014 Oct; 346(6209):635-8. PubMed ID: 25359975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cr isotopic insights into ca. 1.9 Ga oxidative weathering of the continents using the Beaverlodge Lake paleosol, Northwest Territories, Canada.
    Toma J; Holmden C; Shakotko P; Pan Y; Ootes L
    Geobiology; 2019 Sep; 17(5):467-489. PubMed ID: 31006990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atmospheric oxygenation three billion years ago.
    Crowe SA; Døssing LN; Beukes NJ; Bau M; Kruger SJ; Frei R; Canfield DE
    Nature; 2013 Sep; 501(7468):535-8. PubMed ID: 24067713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypothesized link between Neoproterozoic greening of the land surface and the establishment of an oxygen-rich atmosphere.
    Kump LR
    Proc Natl Acad Sci U S A; 2014 Sep; 111(39):14062-5. PubMed ID: 25225378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paleosols and the evolution of atmospheric oxygen: a critical review.
    Rye R; Holland HD
    Am J Sci; 1998 Oct; 298(8):621-72. PubMed ID: 11542256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromium geochemistry of the ca. 1.85 Ga Flin Flon paleosol.
    Babechuk MG; Kleinhanns IC; Schoenberg R
    Geobiology; 2017 Jan; 15(1):30-50. PubMed ID: 27444369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Earliest land plants created modern levels of atmospheric oxygen.
    Lenton TM; Dahl TW; Daines SJ; Mills BJ; Ozaki K; Saltzman MR; Porada P
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9704-9. PubMed ID: 27528678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid oxygenation of Earth's atmosphere 2.33 billion years ago.
    Luo G; Ono S; Beukes NJ; Wang DT; Xie S; Summons RE
    Sci Adv; 2016 May; 2(5):e1600134. PubMed ID: 27386544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large Mass-Independent Oxygen Isotope Fractionations in Mid-Proterozoic Sediments: Evidence for a Low-Oxygen Atmosphere?
    Planavsky NJ; Reinhard CT; Isson TT; Ozaki K; Crockford PW
    Astrobiology; 2020 May; 20(5):628-636. PubMed ID: 32228301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans.
    Hamilton TL; Bryant DA; Macalady JL
    Environ Microbiol; 2016 Feb; 18(2):325-40. PubMed ID: 26549614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly fractionated chromium isotopes in Mesoproterozoic-aged shales and atmospheric oxygen.
    Canfield DE; Zhang S; Frank AB; Wang X; Wang H; Su J; Ye Y; Frei R
    Nat Commun; 2018 Jul; 9(1):2871. PubMed ID: 30030422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence in pre-2.2 Ga paleosols for the early evolution of atmospheric oxygen and terrestrial biota.
    Ohmoto H
    Geology; 1996 Dec; 24(12):1135-8. PubMed ID: 11540480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A theory of atmospheric oxygen.
    Laakso TA; Schrag DP
    Geobiology; 2017 May; 15(3):366-384. PubMed ID: 28378894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term sedimentary recycling of rare sulphur isotope anomalies.
    Reinhard CT; Planavsky NJ; Lyons TW
    Nature; 2013 May; 497(7447):100-3. PubMed ID: 23615613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paleosols and their relevance to Precambrian atmospheric composition.
    Palmer JA; Phillips GN; McCarthy TS
    J Geol; 1989 Jan; 97(1):77-92. PubMed ID: 11539598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A case for low atmospheric oxygen levels during Earth's middle history.
    Planavsky NJ; Cole DB; Isson TT; Reinhard CT; Crockford PW; Sheldon ND; Lyons TW
    Emerg Top Life Sci; 2018 Sep; 2(2):149-159. PubMed ID: 32412619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere.
    Kasting JF
    Precambrian Res; 1987; 34():205-29. PubMed ID: 11542097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Late Archean biospheric oxygenation and atmospheric evolution.
    Kaufman AJ; Johnston DT; Farquhar J; Masterson AL; Lyons TW; Bates S; Anbar AD; Arnold GL; Garvin J; Buick R
    Science; 2007 Sep; 317(5846):1900-3. PubMed ID: 17901329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.