These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 31436082)
1. Electrospun Fiber Mesh for High-Resolution Measurements of Oxygen Tension in Cranial Bone Defect Repair. Schilling K; El Khatib M; Plunkett S; Xue J; Xia Y; Vinogradov SA; Brown E; Zhang X ACS Appl Mater Interfaces; 2019 Sep; 11(37):33548-33558. PubMed ID: 31436082 [TBL] [Abstract][Full Text] [Related]
2. Spatiotemporal Analyses of Osteogenesis and Angiogenesis via Intravital Imaging in Cranial Bone Defect Repair. Huang C; Ness VP; Yang X; Chen H; Luo J; Brown EB; Zhang X J Bone Miner Res; 2015 Jul; 30(7):1217-30. PubMed ID: 25640220 [TBL] [Abstract][Full Text] [Related]
4. Two-photon antenna-core oxygen probe with enhanced performance. Roussakis E; Spencer JA; Lin CP; Vinogradov SA Anal Chem; 2014 Jun; 86(12):5937-45. PubMed ID: 24848643 [TBL] [Abstract][Full Text] [Related]
5. High-resolution imaging of the osteogenic and angiogenic interface at the site of murine cranial bone defect repair via multiphoton microscopy. Schilling K; Zhai Y; Zhou Z; Zhou B; Brown E; Zhang X Elife; 2022 Nov; 11():. PubMed ID: 36326085 [TBL] [Abstract][Full Text] [Related]
6. Determination of the physiological range of oxygen tension in bone marrow monocytes using two-photon phosphorescence lifetime imaging microscopy. Narazaki A; Shimizu R; Yoshihara T; Kikuta J; Sakaguchi R; Tobita S; Mori Y; Ishii M; Nishikawa K Sci Rep; 2022 Mar; 12(1):3497. PubMed ID: 35273210 [TBL] [Abstract][Full Text] [Related]
7. Imaging of neurosphere oxygenation with phosphorescent probes. Dmitriev RI; Zhdanov AV; Nolan YM; Papkovsky DB Biomaterials; 2013 Dec; 34(37):9307-17. PubMed ID: 24016849 [TBL] [Abstract][Full Text] [Related]
8. Cerebral blood oxygenation measurement based on oxygen-dependent quenching of phosphorescence. Sakadžić S; Roussakis E; Yaseen MA; Mandeville ET; Srinivasan VJ; Arai K; Ruvinskaya S; Wu W; Devor A; Lo EH; Vinogradov SA; Boas DA J Vis Exp; 2011 May; (51):. PubMed ID: 21587157 [TBL] [Abstract][Full Text] [Related]
9. Incorporating platelet-rich plasma into coaxial electrospun nanofibers for bone tissue engineering. Cheng G; Ma X; Li J; Cheng Y; Cao Y; Wang Z; Shi X; Du Y; Deng H; Li Z Int J Pharm; 2018 Aug; 547(1-2):656-666. PubMed ID: 29886100 [TBL] [Abstract][Full Text] [Related]
10. Two-photon phosphorescence lifetime microscopy of retinal capillary plexus oxygenation in mice. Şencan İ; Esipova TV; Yaseen MA; Fu B; Boas DA; Vinogradov SA; Shahidi M; Sakadžić S J Biomed Opt; 2018 Dec; 23(12):1-9. PubMed ID: 30516039 [TBL] [Abstract][Full Text] [Related]
11. Physicochemical and biological characteristics of BMP-2/IGF-1-loaded three-dimensional coaxial electrospun fibrous membranes for bone defect repair. Yin L; Yang S; He M; Chang Y; Wang K; Zhu Y; Liu Y; Chang Y; Yu Z J Mater Sci Mater Med; 2017 Jun; 28(6):94. PubMed ID: 28500409 [TBL] [Abstract][Full Text] [Related]
12. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect. Li J; Xu Q; Teng B; Yu C; Li J; Song L; Lai YX; Zhang J; Zheng W; Ren PG Acta Biomater; 2016 Sep; 42():389-399. PubMed ID: 27326916 [TBL] [Abstract][Full Text] [Related]
13. Measurement of cerebral oxygen pressure in living mice by two-photon phosphorescence lifetime microscopy. Erlebach E; Ravotto L; Wyss MT; Condrau J; Troxler T; Vinogradov SA; Weber B STAR Protoc; 2022 Jun; 3(2):101370. PubMed ID: 35573482 [TBL] [Abstract][Full Text] [Related]
14. Quantitative determination of localized tissue oxygen concentration in vivo by two-photon excitation phosphorescence lifetime measurements. Mik EG; van Leeuwen TG; Raat NJ; Ince C J Appl Physiol (1985); 2004 Nov; 97(5):1962-9. PubMed ID: 15247164 [TBL] [Abstract][Full Text] [Related]
15. Intravital Imaging to Understand Spatiotemporal Regulation of Osteogenesis and Angiogenesis in Cranial Defect Repair and Regeneration. Zhang X Methods Mol Biol; 2018; 1842():229-239. PubMed ID: 30196414 [TBL] [Abstract][Full Text] [Related]
17. Brain Tissue PO Xu K; Boas DA; Sakadžić S; LaManna JC Adv Exp Med Biol; 2017; 977():149-153. PubMed ID: 28685439 [TBL] [Abstract][Full Text] [Related]
18. Teriparatide Treatment Improves Bone Defect Healing Via Anabolic Effects on New Bone Formation and Non-Anabolic Effects on Inhibition of Mast Cells in a Murine Cranial Window Model. Zhang L; Wang T; Chang M; Kaiser C; Kim JD; Wu T; Cao X; Zhang X; Schwarz EM J Bone Miner Res; 2017 Sep; 32(9):1870-1883. PubMed ID: 28556967 [TBL] [Abstract][Full Text] [Related]
19. [Experimental study on repair of critical-sized cranial defect by tissue engineered bone]. Hou R; Mao T; Yang Y; Gao Z; Cheng X; Chen S; Chen F Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Oct; 19(10):818-21. PubMed ID: 16274133 [TBL] [Abstract][Full Text] [Related]
20. Influence of the in vitro culture period on the in vivo performance of cell/titanium bone tissue-engineered constructs using a rat cranial critical size defect model. Sikavitsas VI; van den Dolder J; Bancroft GN; Jansen JA; Mikos AG J Biomed Mater Res A; 2003 Dec; 67(3):944-51. PubMed ID: 14613243 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]