These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
390 related articles for article (PubMed ID: 31436123)
21. miR-124 Regulates the Phase of Drosophila Circadian Locomotor Behavior. Zhang Y; Lamba P; Guo P; Emery P J Neurosci; 2016 Feb; 36(6):2007-13. PubMed ID: 26865623 [TBL] [Abstract][Full Text] [Related]
22. Seasonal Variations of Locomotor Activity Rhythms in Melatonin-Proficient and -Deficient Mice under Seminatural Outdoor Conditions. Metzger J; Wicht H; Korf HW; Pfeffer M J Biol Rhythms; 2020 Feb; 35(1):58-71. PubMed ID: 31625428 [TBL] [Abstract][Full Text] [Related]
23. Adaptation of Circadian Neuronal Network to Photoperiod in High-Latitude European Drosophilids. Menegazzi P; Dalla Benetta E; Beauchamp M; Schlichting M; Steffan-Dewenter I; Helfrich-Förster C Curr Biol; 2017 Mar; 27(6):833-839. PubMed ID: 28262491 [TBL] [Abstract][Full Text] [Related]
24. Comparative Antennal and Behavioral Responses of Summer and Winter Morph Drosophila suzukii (Diptera: Drosophilidae) to Ecologically Relevant Volatiles. Kirkpatrick DM; Leach HL; Xu P; Dong K; Isaacs R; Gut LJ Environ Entomol; 2018 Jun; 47(3):700-706. PubMed ID: 29668908 [TBL] [Abstract][Full Text] [Related]
25. Locomotor Behaviour and Clock Neurons Organisation in the Agricultural Pest Hansen CN; Özkaya Ö; Roe H; Kyriacou CP; Giongo L; Rosato E Front Physiol; 2019; 10():941. PubMed ID: 31396106 [No Abstract] [Full Text] [Related]
26. Genetics and molecular biology of rhythms in Drosophila and other insects. Hall JC Adv Genet; 2003; 48():1-280. PubMed ID: 12593455 [TBL] [Abstract][Full Text] [Related]
27. Light triggers a network switch between circadian morning and evening oscillators controlling behaviour during daily temperature cycles. Lorber C; Leleux S; Stanewsky R; Lamaze A PLoS Genet; 2022 Nov; 18(11):e1010487. PubMed ID: 36367867 [TBL] [Abstract][Full Text] [Related]
28. Paradoxical masking effects of bright photophase and high temperature in Drosophila malerkotliana. Sharma S; Thakurdas P; Sinam B; Joshi D Chronobiol Int; 2012 Mar; 29(2):157-65. PubMed ID: 22324554 [TBL] [Abstract][Full Text] [Related]
29. Social synchronization of circadian locomotor activity rhythm in the fruit fly Drosophila melanogaster. Lone SR; Sharma VK J Exp Biol; 2011 Nov; 214(Pt 22):3742-50. PubMed ID: 22031738 [TBL] [Abstract][Full Text] [Related]
30. Daily temperature cycles prolong lifespan and have sex-specific effects on peripheral clock gene expression in Drosophila melanogaster. Goh GH; Blache D; Mark PJ; Kennington WJ; Maloney SK J Exp Biol; 2021 May; 224(10):. PubMed ID: 33758022 [TBL] [Abstract][Full Text] [Related]
31. Developmental Acclimation of Drosophila suzukii (Diptera: Drosophilidae) and Its Effect on Diapause and Winter Stress Tolerance. Wallingford AK; Loeb GM Environ Entomol; 2016 Aug; 45(4):1081-9. PubMed ID: 27412194 [TBL] [Abstract][Full Text] [Related]
32. Photic entrainment in Drosophila assessed by locomotor activity recordings. Schlichting M; Helfrich-Förster C Methods Enzymol; 2015; 552():105-23. PubMed ID: 25707274 [TBL] [Abstract][Full Text] [Related]
34. Plasticity of Daily Behavioral Rhythms in Foragers and Nurses of the Ant Camponotus rufipes: Influence of Social Context and Feeding Times. Mildner S; Roces F PLoS One; 2017; 12(1):e0169244. PubMed ID: 28099496 [TBL] [Abstract][Full Text] [Related]
35. Stability of adult emergence and activity/rest rhythms in fruit flies Drosophila melanogaster under semi-natural condition. Kannan NN; Varma V; De J; Sharma VK PLoS One; 2012; 7(11):e50379. PubMed ID: 23209729 [TBL] [Abstract][Full Text] [Related]
36. Circadian Modulation of Alcohol-Induced Sedation and Recovery in Male and Female Drosophila. De Nobrega AK; Lyons LC J Biol Rhythms; 2016 Apr; 31(2):142-60. PubMed ID: 26833081 [TBL] [Abstract][Full Text] [Related]
37. Behavioral Responses of Drosophila suzukii (Diptera: Drosophilidae) to Visual Stimuli Under Laboratory, Semifield, and Field Conditions. Rice KB; Short BD; Jones SK; Leskey TC Environ Entomol; 2016 Dec; 45(6):1480-1488. PubMed ID: 28028095 [TBL] [Abstract][Full Text] [Related]
38. Natural Zeitgebers Under Temperate Conditions Cannot Compensate for the Loss of a Functional Circadian Clock in Timing of a Vital Behavior in Ruf F; Mitesser O; Mungwa ST; Horn M; Rieger D; Hovestadt T; Wegener C J Biol Rhythms; 2021 Jun; 36(3):271-285. PubMed ID: 33745356 [TBL] [Abstract][Full Text] [Related]
39. Responses of activity rhythms to temperature cues evolve in Abhilash L; Kalliyil A; Sheeba V J Exp Biol; 2020 Jun; 223(Pt 11):. PubMed ID: 32291322 [TBL] [Abstract][Full Text] [Related]
40. Life at High Latitudes Does Not Require Circadian Behavioral Rhythmicity under Constant Darkness. Bertolini E; Schubert FK; Zanini D; Sehadová H; Helfrich-Förster C; Menegazzi P Curr Biol; 2019 Nov; 29(22):3928-3936.e3. PubMed ID: 31679928 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]