BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 31436513)

  • 1. Contraction intensity-dependent variations in the responses to brain and corticospinal tract stimulation after a single session of resistance training in men.
    Colomer-Poveda D; Romero-Arenas S; Lundbye-Jensen J; Hortobágyi T; Márquez G
    J Appl Physiol (1985); 2019 Oct; 127(4):1128-1139. PubMed ID: 31436513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute Strength Training Increases Responses to Stimulation of Corticospinal Axons.
    Nuzzo JL; Barry BK; Gandevia SC; Taylor JL
    Med Sci Sports Exerc; 2016 Jan; 48(1):139-50. PubMed ID: 26258855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corticospinal excitability to the biceps brachii and its relationship to postactivation potentiation of the elbow flexors.
    Collins BW; Gale LH; Buckle NCM; Button DC
    Physiol Rep; 2017 Apr; 5(8):. PubMed ID: 28455452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elbow angle modulates corticospinal excitability to the resting biceps brachii at both spinal and supraspinal levels.
    Dongés SC; Taylor JL; Nuzzo JL
    Exp Physiol; 2019 Apr; 104(4):546-555. PubMed ID: 30690803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reductions in motoneuron excitability during sustained isometric contractions are dependent on stimulus and contraction intensity.
    Brownstein CG; Espeit L; Royer N; Ansdell P; Škarabot J; Souron R; Lapole T; Millet GY
    J Neurophysiol; 2021 May; 125(5):1636-1646. PubMed ID: 33788627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corticospinal excitability of the biceps brachii is shoulder position dependent.
    Collins BW; Cadigan EWJ; Stefanelli L; Button DC
    J Neurophysiol; 2017 Dec; 118(6):3242-3251. PubMed ID: 28855295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of forearm position and contraction intensity on cortical and spinal excitability during a submaximal force steadiness task of the elbow flexors.
    Yacyshyn AF; Kuzyk S; Jakobi JM; McNeil CJ
    J Neurophysiol; 2020 Feb; 123(2):522-528. PubMed ID: 31774348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of blood flow occlusion on corticospinal excitability during sustained low-intensity isometric elbow flexion.
    Copithorne DB; Rice CL; McNeil CJ
    J Neurophysiol; 2020 Mar; 123(3):1113-1119. PubMed ID: 31995434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic resistance training enhances the spinal excitability of the biceps brachii in the non-dominant arm at moderate contraction intensities.
    Philpott DT; Pearcey GE; Forman D; Power KE; Button DC
    Neurosci Lett; 2015 Jan; 585():12-6. PubMed ID: 25445370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intensity-dependent alterations in the excitability of cortical and spinal projections to the knee extensors during isometric and locomotor exercise.
    Weavil JC; Sidhu SK; Mangum TS; Richardson RS; Amann M
    Am J Physiol Regul Integr Comp Physiol; 2015 Jun; 308(12):R998-1007. PubMed ID: 25876651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corticospinal excitability of the biceps brachii is higher during arm cycling than an intensity-matched tonic contraction.
    Forman D; Raj A; Button DC; Power KE
    J Neurophysiol; 2014 Sep; 112(5):1142-51. PubMed ID: 24899677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Training intensity-dependent increases in corticospinal but not intracortical excitability after acute strength training.
    Colomer-Poveda D; Hortobágyi T; Keller M; Romero-Arenas S; Márquez G
    Scand J Med Sci Sports; 2020 Apr; 30(4):652-661. PubMed ID: 31785009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central contributions to torque depression: an antagonist perspective.
    Sypkes CT; Contento VS; Bent LR; McNeil CJ; Power GA
    Exp Brain Res; 2019 Feb; 237(2):443-452. PubMed ID: 30456694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitability at the motoneuron pool and motor cortex is specifically modulated in lengthening compared to isometric contractions.
    Gruber M; Linnamo V; Strojnik V; Rantalainen T; Avela J
    J Neurophysiol; 2009 Apr; 101(4):2030-40. PubMed ID: 19193768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increases in corticospinal responsiveness during a sustained submaximal plantar flexion.
    Hoffman BW; Oya T; Carroll TJ; Cresswell AG
    J Appl Physiol (1985); 2009 Jul; 107(1):112-20. PubMed ID: 19443741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in supraspinal and spinal excitability during various force outputs of the biceps brachii in chronic- and non-resistance trained individuals.
    Pearcey GE; Power KE; Button DC
    PLoS One; 2014; 9(5):e98468. PubMed ID: 24875495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal contribution to neuromuscular recovery differs between elbow-flexor and knee-extensor muscles after a maximal sustained fatiguing task.
    Vernillo G; Temesi J; Martin M; Krüger RL; Millet GY
    J Neurophysiol; 2020 Sep; 124(3):763-773. PubMed ID: 32755359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behaviour of the motoneurone pool in a fatiguing submaximal contraction.
    McNeil CJ; Giesebrecht S; Gandevia SC; Taylor JL
    J Physiol; 2011 Jul; 589(Pt 14):3533-44. PubMed ID: 21606110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The response to paired motor cortical stimuli is abolished at a spinal level during human muscle fatigue.
    McNeil CJ; Martin PG; Gandevia SC; Taylor JL
    J Physiol; 2009 Dec; 587(Pt 23):5601-12. PubMed ID: 19805743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reproducible measurement of human motoneuron excitability with magnetic stimulation of the corticospinal tract.
    Martin PG; Hudson AL; Gandevia SC; Taylor JL
    J Neurophysiol; 2009 Jul; 102(1):606-13. PubMed ID: 19403741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.