These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31436787)

  • 1. Co-expression networks for plant biology: why and how.
    Rao X; Dixon RA
    Acta Biochim Biophys Sin (Shanghai); 2019 Sep; 51(10):981-988. PubMed ID: 31436787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PlaNet: Comparative Co-Expression Network Analyses for Plants.
    Proost S; Mutwil M
    Methods Mol Biol; 2017; 1533():213-227. PubMed ID: 27987173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biostatistical approaches for the reconstruction of gene co-expression networks based on transcriptomic data.
    López-Kleine L; Leal L; López C
    Brief Funct Genomics; 2013 Sep; 12(5):457-67. PubMed ID: 23407269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Practical Utilization of OryzaExpress and Plant Omics Data Center Databases to Explore Gene Expression Networks in Oryza Sativa and Other Plant Species.
    Kudo T; Terashima S; Takaki Y; Nakamura Y; Kobayashi M; Yano K
    Methods Mol Biol; 2017; 1533():229-240. PubMed ID: 27987174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative co-expression analysis in plant biology.
    Movahedi S; Van Bel M; Heyndrickx KS; Vandepoele K
    Plant Cell Environ; 2012 Oct; 35(10):1787-98. PubMed ID: 22489681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding genes with coexpression networks and metabolomics - 'majority report by precogs'.
    Saito K; Hirai MY; Yonekura-Sakakibara K
    Trends Plant Sci; 2008 Jan; 13(1):36-43. PubMed ID: 18160330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approaches for extracting practical information from gene co-expression networks in plant biology.
    Aoki K; Ogata Y; Shibata D
    Plant Cell Physiol; 2007 Mar; 48(3):381-90. PubMed ID: 17251202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue-specific transcriptional biomarkers in medicinal plants: Application of large-scale meta-analysis and computational systems biology.
    Tahmasebi A; Ebrahimie E; Pakniyat H; Ebrahimi M; Mohammadi-Dehcheshmeh M
    Gene; 2019 Apr; 691():114-124. PubMed ID: 30620887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Regulatory Event Mining by iDREM in Large-Scale Multi-omics Datasets During Biotic and Abiotic Stress in Plants.
    Mishra B; Kumar N; Liu J; Pajerowska-Mukhtar KM
    Methods Mol Biol; 2021; 2328():191-202. PubMed ID: 34251627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MCENet: A database for maize conditional co-expression network and network characterization collaborated with multi-dimensional omics levels.
    Tian T; You Q; Yan H; Xu W; Su Z
    J Genet Genomics; 2018 Jul; 45(7):351-360. PubMed ID: 30057343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Omics meet networks - using systems approaches to infer regulatory networks in plants.
    Moreno-Risueno MA; Busch W; Benfey PN
    Curr Opin Plant Biol; 2010 Apr; 13(2):126-31. PubMed ID: 20036612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of regulatory modules in genome scale transcription regulatory networks.
    Song Q; Grene R; Heath LS; Li S
    BMC Syst Biol; 2017 Dec; 11(1):140. PubMed ID: 29246163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diurnal.plant.tools: Comparative Transcriptomic and Co-expression Analyses of Diurnal Gene Expression of the Archaeplastida Kingdom.
    Ng JWX; Tan QW; Ferrari C; Mutwil M
    Plant Cell Physiol; 2020 Jan; 61(1):212-220. PubMed ID: 31501868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-expression network analyses identify functional modules associated with development and stress response in Gossypium arboreum.
    You Q; Zhang L; Yi X; Zhang K; Yao D; Zhang X; Wang Q; Zhao X; Ling Y; Xu W; Li F; Su Z
    Sci Rep; 2016 Dec; 6():38436. PubMed ID: 27922095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping Transcriptional Networks in Plants: Data-Driven Discovery of Novel Biological Mechanisms.
    Gaudinier A; Brady SM
    Annu Rev Plant Biol; 2016 Apr; 67():575-94. PubMed ID: 27128468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From single genes to co-expression networks: extracting knowledge from barley functional genomics.
    Faccioli P; Provero P; Herrmann C; Stanca AM; Morcia C; Terzi V
    Plant Mol Biol; 2005 Jul; 58(5):739-50. PubMed ID: 16158246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative Approaches to Enhance Understanding of Plant Metabolic Pathway Structure and Regulation.
    Tohge T; Scossa F; Fernie AR
    Plant Physiol; 2015 Nov; 169(3):1499-511. PubMed ID: 26371234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protocol for Coexpression Network Construction and Stress-Responsive Expression Analysis in Brachypodium.
    Sircar S; Parekh N; Sablok G
    Methods Mol Biol; 2018; 1667():203-221. PubMed ID: 29039014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Transcriptome Analysis of Different
    Yuan Y; Zhang B; Tang X; Zhang J; Lin J
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 32013237
    [No Abstract]   [Full Text] [Related]  

  • 20. Vitis OneGenE: A Causality-Based Approach to Generate Gene Networks in
    Pilati S; Malacarne G; Navarro-Payá D; Tomè G; Riscica L; Cavecchia V; Matus JT; Moser C; Blanzieri E
    Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.