These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31436884)

  • 1. A synthetic glycerol assimilation pathway demonstrates biochemical constraints of cellular metabolism.
    Lindner SN; Aslan S; Müller A; Hoffart E; Behrens P; Edlich-Muth C; Blombach B; Bar-Even A
    FEBS J; 2020 Jan; 287(1):160-172. PubMed ID: 31436884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A synthetic pathway for the production of 2-hydroxyisovaleric acid in Escherichia coli.
    Cheong S; Clomburg JM; Gonzalez R
    J Ind Microbiol Biotechnol; 2018 Jul; 45(7):579-588. PubMed ID: 29330665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic biosensor accelerates evolution by rewiring carbon metabolism toward a specific metabolite.
    Seok JY; Han YH; Yang JS; Yang J; Lim HG; Kim SG; Seo SW; Jung GY
    Cell Rep; 2021 Aug; 36(8):109589. PubMed ID: 34433019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol.
    Clomburg JM; Gonzalez R
    Biotechnol Bioeng; 2011 Apr; 108(4):867-79. PubMed ID: 21404260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical and Metabolic Controls on Dihydroxyacetone Metabolism Lead to Suboptimal Growth of Escherichia coli.
    Peiro C; Millard P; de Simone A; Cahoreau E; Peyriga L; Enjalbert B; Heux S
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31126940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of shikimic acid production in Escherichia coli with growth phase-dependent regulation in the biosynthetic pathway from glycerol.
    Lee MY; Hung WP; Tsai SH
    World J Microbiol Biotechnol; 2017 Feb; 33(2):25. PubMed ID: 28044275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Improving β-carotene production in Escherichia coli by metabolic engineering of glycerol utilization pathway].
    Dong Y; Hu K; Li X; Li Q; Zhang X
    Sheng Wu Gong Cheng Xue Bao; 2017 Feb; 33(2):247-260. PubMed ID: 28956381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiomics Study of Bacterial Growth Arrest in a Synthetic Biology Application.
    Ropers D; Couté Y; Faure L; Ferré S; Labourdette D; Shabani A; Trouilh L; Vasseur P; Corre G; Ferro M; Teste MA; Geiselmann J; de Jong H
    ACS Synth Biol; 2021 Nov; 10(11):2910-2926. PubMed ID: 34739215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of substrate and IPTG concentrations on the burden to growth of Escherichia coli on glycerol due to the expression of Lac proteins.
    Malakar P; Venkatesh KV
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2543-9. PubMed ID: 22038249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli.
    Bennett BD; Kimball EH; Gao M; Osterhout R; Van Dien SJ; Rabinowitz JD
    Nat Chem Biol; 2009 Aug; 5(8):593-9. PubMed ID: 19561621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering an Obligate Photoautotrophic Cyanobacterium to Utilize Glycerol for Growth and Chemical Production.
    Kanno M; Atsumi S
    ACS Synth Biol; 2017 Jan; 6(1):69-75. PubMed ID: 27643408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Synthetic Alternative to Canonical One-Carbon Metabolism.
    Bouzon M; Perret A; Loreau O; Delmas V; Perchat N; Weissenbach J; Taran F; Marlière P
    ACS Synth Biol; 2017 Aug; 6(8):1520-1533. PubMed ID: 28467058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MRE: a web tool to suggest foreign enzymes for the biosynthesis pathway design with competing endogenous reactions in mind.
    Kuwahara H; Alazmi M; Cui X; Gao X
    Nucleic Acids Res; 2016 Jul; 44(W1):W217-25. PubMed ID: 27131375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of an alternative glycerol-utilization pathway for improved β-carotene production in Escherichia coli.
    Guo JY; Hu KL; Bi CH; Li QY; Zhang XL
    J Ind Microbiol Biotechnol; 2018 Aug; 45(8):697-705. PubMed ID: 29752566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Escherichia coli to enhance acetol production from glycerol.
    Yao R; Liu Q; Hu H; Wood TK; Zhang X
    Appl Microbiol Biotechnol; 2015 Oct; 99(19):7945-52. PubMed ID: 26078109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward Synthetic Biology Strategies for Adipic Acid Production: An in Silico Tool for Combined Thermodynamics and Stoichiometric Analysis of Metabolic Networks.
    Averesch NJH; Martínez VS; Nielsen LK; Krömer JO
    ACS Synth Biol; 2018 Feb; 7(2):490-509. PubMed ID: 29237121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-yield production of L-serine from glycerol by engineered Escherichia coli.
    Zhang X; Zhang D; Zhu J; Liu W; Xu G; Zhang X; Shi J; Xu Z
    J Ind Microbiol Biotechnol; 2019 Feb; 46(2):221-230. PubMed ID: 30600411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating optimal profiles of genetic alterations using constraint-based models.
    Gadkar KG; Doyle Iii FJ; Edwards JS; Mahadevan R
    Biotechnol Bioeng; 2005 Jan; 89(2):243-51. PubMed ID: 15593263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A discrete mathematical model applied to genetic regulation and metabolic networks.
    Asenjo AJ; Ramirez P; Rapaport I; Aracena J; Goles E; Andrews BA
    J Microbiol Biotechnol; 2007 Mar; 17(3):496-510. PubMed ID: 18050955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.