These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
379 related articles for article (PubMed ID: 31436947)
1. CDs@ZIF-8 Modified Thin Film Polyamide Nanocomposite Membrane for Simultaneous Enhancement of Chlorine-Resistance and Disinfection Byproducts Removal in Drinking Water. Wang F; Zheng T; Xiong R; Wang P; Ma J ACS Appl Mater Interfaces; 2019 Sep; 11(36):33033-33042. PubMed ID: 31436947 [TBL] [Abstract][Full Text] [Related]
2. Strong improvement of reverse osmosis polyamide membrane performance by addition of ZIF-8 nanoparticles: Effect of particle size and dispersion in selective layer. Wang F; Zheng T; Xiong R; Wang P; Ma J Chemosphere; 2019 Oct; 233():524-531. PubMed ID: 31185336 [TBL] [Abstract][Full Text] [Related]
3. Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance. Lind ML; Eumine Suk D; Nguyen TV; Hoek EM Environ Sci Technol; 2010 Nov; 44(21):8230-5. PubMed ID: 20942398 [TBL] [Abstract][Full Text] [Related]
5. A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches. Lau WJ; Gray S; Matsuura T; Emadzadeh D; Chen JP; Ismail AF Water Res; 2015 Sep; 80():306-24. PubMed ID: 26011136 [TBL] [Abstract][Full Text] [Related]
6. Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: A review. Zhao DL; Japip S; Zhang Y; Weber M; Maletzko C; Chung TS Water Res; 2020 Apr; 173():115557. PubMed ID: 32028249 [TBL] [Abstract][Full Text] [Related]
7. Thin film nanocomposite hollow fiber membranes comprising Na Gai W; Zhao DL; Chung TS Water Res; 2019 May; 154():54-61. PubMed ID: 30771707 [TBL] [Abstract][Full Text] [Related]
8. The occurrence and transformation behaviors of disinfection byproducts in drinking water distribution systems in rural areas of eastern China. Yu Y; Ma X; Chen R; Li G; Tao H; Shi B Chemosphere; 2019 Aug; 228():101-109. PubMed ID: 31026630 [TBL] [Abstract][Full Text] [Related]
9. Structure-motion-performance relationship of flux-enhanced reverse osmosis (RO) membranes composed of aromatic polyamide thin films. Kwak SY; Jung SG; Kim SH Environ Sci Technol; 2001 Nov; 35(21):4334-40. PubMed ID: 11718351 [TBL] [Abstract][Full Text] [Related]
10. Modifying thin film composite membrane with zeolitic imidazolate framework-8@polydopamine for enhanced antifouling property. Zhang G; Zhang J; Lv P; Sun J; Zhao P; Yang L Chemosphere; 2020 Jun; 248():125956. PubMed ID: 32028156 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of polyamide thin-film nanocomposite membranes with enhanced surface charge for nitrate ion removal from water resources. Ghaee A; Zerafat MM; Askari P; Sabbaghi S; Sadatnia B Environ Technol; 2017 Mar; 38(6):772-781. PubMed ID: 28191867 [TBL] [Abstract][Full Text] [Related]
13. Control of disinfection byproducts in drinking water treatment plants: Insight into activated carbon filter. Yu Y; Huang X; Chen R; Pan L; Shi B Chemosphere; 2021 Oct; 280():130958. PubMed ID: 34162113 [TBL] [Abstract][Full Text] [Related]
14. Enhanced Water Permeability and Antifouling Property of Coffee-Ring-Textured Polyamide Membranes by In Situ Incorporation of a Zwitterionic Metal-Organic Framework. Wang F; Zheng T; Wang P; Chen M; Wang Z; Jiang H; Ma J Environ Sci Technol; 2021 Apr; 55(8):5324-5334. PubMed ID: 33728905 [TBL] [Abstract][Full Text] [Related]
15. Removal of Intermediate Aromatic Halogenated DBPs by Activated Carbon Adsorption: A New Approach to Controlling Halogenated DBPs in Chlorinated Drinking Water. Jiang J; Zhang X; Zhu X; Li Y Environ Sci Technol; 2017 Mar; 51(6):3435-3444. PubMed ID: 28199792 [TBL] [Abstract][Full Text] [Related]
16. In Situ Surface Modification of Thin-Film Composite Polyamide Membrane with Zwitterions for Enhanced Chlorine Resistance and Transport Properties. Wang J; Zhang S; Wu P; Shi W; Wang Z; Hu Y ACS Appl Mater Interfaces; 2019 Mar; 11(12):12043-12052. PubMed ID: 30817111 [TBL] [Abstract][Full Text] [Related]
17. Incorporation of Core-Shell-Structured Zwitterionic Carbon Dots in Thin-Film Nanocomposite Membranes for Simultaneously Improved Perm-Selectivity and Antifouling Properties. Zheng H; Mou Z; Zhou K ACS Appl Mater Interfaces; 2020 Nov; 12(47):53215-53229. PubMed ID: 33185418 [TBL] [Abstract][Full Text] [Related]
18. Cerium oxide doped nanocomposite membranes for reverse osmosis desalination. Wang Y; Gao B; Li S; Jin B; Yue Q; Wang Z Chemosphere; 2019 Mar; 218():974-983. PubMed ID: 30609503 [TBL] [Abstract][Full Text] [Related]
19. Correlating the Role of Nanofillers with Active Layer Properties and Performance of Thin-Film Nanocomposite Membranes. Perry LA; Chew NGP; Grzebyk K; Cay-Durgun P; Lind ML; Sitaula P; Soukri M; Coronell O Desalination; 2023 Mar; 550():. PubMed ID: 37274380 [TBL] [Abstract][Full Text] [Related]
20. Effects of hypochlorous acid exposure on the rejection of salt, polyethylene glycols, boron and arsenic(V) by nanofiltration and reverse osmosis membranes. Do VT; Tang CY; Reinhard M; Leckie JO Water Res; 2012 Oct; 46(16):5217-23. PubMed ID: 22818949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]