These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 31436961)
1. Solid and Aqueous Speciation of Yttrium in Passive Remediation Systems of Acid Mine Drainage. Lozano A; Fernández-Martínez A; Ayora C; Di Tommaso D; Poulain A; Rovezzi M; Marini C Environ Sci Technol; 2019 Oct; 53(19):11153-11161. PubMed ID: 31436961 [TBL] [Abstract][Full Text] [Related]
2. Recovery of Rare Earth Elements and Yttrium from Passive-Remediation Systems of Acid Mine Drainage. Ayora C; Macías F; Torres E; Lozano A; Carrero S; Nieto JM; Pérez-López R; Fernández-Martínez A; Castillo-Michel H Environ Sci Technol; 2016 Aug; 50(15):8255-62. PubMed ID: 27351211 [TBL] [Abstract][Full Text] [Related]
3. Geochemical characteristics of dissolved rare earth elements in acid mine drainage from abandoned high-As coal mining area, southwestern China. Li X; Wu P Environ Sci Pollut Res Int; 2017 Sep; 24(25):20540-20555. PubMed ID: 28710735 [TBL] [Abstract][Full Text] [Related]
4. Arsenate and Selenate Scavenging by Basaluminite: Insights into the Reactivity of Aluminum Phases in Acid Mine Drainage. Carrero S; Fernandez-Martinez A; Pérez-López R; Poulain A; Salas-Colera E; Nieto JM Environ Sci Technol; 2017 Jan; 51(1):28-37. PubMed ID: 27995804 [TBL] [Abstract][Full Text] [Related]
5. Geochemical signatures of rare earth elements and yttrium exploited by acid solution mining around an ion-adsorption type deposit: Role of source control and potential for recovery. Liu H; Guo H; Pourret O; Wang Z; Liu M; Zhang W; Li Z; Gao B; Sun Z; Laine P Sci Total Environ; 2022 Jan; 804():150241. PubMed ID: 34798751 [TBL] [Abstract][Full Text] [Related]
6. Effect of various ligands on the selective precipitation of critical and rare earth elements from acid mine drainage. Hassas BV; Rezaee M; Pisupati SV Chemosphere; 2021 Oct; 280():130684. PubMed ID: 34162080 [TBL] [Abstract][Full Text] [Related]
7. Potential for high-grade recovery of rare earth elements and cobalt from acid mine drainage via adsorption to precipitated manganese (IV) oxides. Depp CT; Goodman AJ; Blanchard PER; Massimi SE; Reid JW; Bednar AJ; Ranville JF Chemosphere; 2024 Sep; 364():143144. PubMed ID: 39168384 [TBL] [Abstract][Full Text] [Related]
8. Determination and prediction of micro scale rare earth element geochemical associations in mine drainage treatment wastes. Hedin BC; Stuckman MY; Cravotta CA; Lopano CL; Capo RC Chemosphere; 2024 Jan; 346():140475. PubMed ID: 37898468 [TBL] [Abstract][Full Text] [Related]
9. A critical review on remediation, reuse, and resource recovery from acid mine drainage. Naidu G; Ryu S; Thiruvenkatachari R; Choi Y; Jeong S; Vigneswaran S Environ Pollut; 2019 Apr; 247():1110-1124. PubMed ID: 30823340 [TBL] [Abstract][Full Text] [Related]
10. Recovery of Rare Earth Elements from Acid Mine Drainage with Supported Liquid Membranes: Impacts of Feedstock Composition for Extraction Performance. Middleton A; Hedin BC; Hsu-Kim H Environ Sci Technol; 2024 Feb; 58(6):2998-3006. PubMed ID: 38287223 [TBL] [Abstract][Full Text] [Related]
11. Geochemistry of rare earth elements in a passive treatment system built for acid mine drainage remediation. Prudêncio MI; Valente T; Marques R; Sequeira Braga MA; Pamplona J Chemosphere; 2015 Nov; 138():691-700. PubMed ID: 26247412 [TBL] [Abstract][Full Text] [Related]
12. Differences in bulk and microscale yttrium speciation in coal combustion fly ash. Taggart RK; Rivera NA; Levard C; Ambrosi JP; Borschneck D; Hower JC; Hsu-Kim H Environ Sci Process Impacts; 2018 Oct; 20(10):1390-1403. PubMed ID: 30264835 [TBL] [Abstract][Full Text] [Related]
13. Mineralogical controls on mobility of rare earth elements in acid mine drainage environments. Soyol-Erdene TO; Valente T; Grande JA; de la Torre ML Chemosphere; 2018 Aug; 205():317-327. PubMed ID: 29704839 [TBL] [Abstract][Full Text] [Related]
14. Mine drainage: Remediation technology and resource recovery. Viadero RC; Zhang S; Hu X; Wei X Water Environ Res; 2020 Oct; 92(10):1533-1540. PubMed ID: 32671879 [TBL] [Abstract][Full Text] [Related]
15. Trend of the research on rare earth elements in environmental science. Kang J; Kang AM Environ Sci Pollut Res Int; 2020 May; 27(13):14318-14321. PubMed ID: 32088825 [TBL] [Abstract][Full Text] [Related]
16. Staged electrochemical treatment guided by modelling allows for targeted recovery of metals and rare earth elements from acid mine drainage. Brewster ET; Freguia S; Edraki M; Berry L; Ledezma P J Environ Manage; 2020 Dec; 275():111266. PubMed ID: 32846359 [TBL] [Abstract][Full Text] [Related]
17. Biological treatment removal of rare earth elements and yttrium (REY) and metals from actual acid mine drainage. Nogueira EW; Licona FM; Godoi LAG; Brucha G; Damianovic MHRZ Water Sci Technol; 2019 Oct; 80(8):1485-1493. PubMed ID: 31961811 [TBL] [Abstract][Full Text] [Related]
18. Selective Recovery of Rare Earth Elements from Coal Fly Ash Leachates Using Liquid Membrane Processes. Smith RC; Taggart RK; Hower JC; Wiesner MR; Hsu-Kim H Environ Sci Technol; 2019 Apr; 53(8):4490-4499. PubMed ID: 30907587 [TBL] [Abstract][Full Text] [Related]
19. Rare-earth elements in the circular economy: The case of yttrium. Favot M; Massarutto A J Environ Manage; 2019 Jun; 240():504-510. PubMed ID: 30974293 [TBL] [Abstract][Full Text] [Related]
20. The role of iron in the rare earth elements and uranium scavenging by Fe-Al-precipitates in acid mine drainage. Moraes MLB; Ladeira ACQ Chemosphere; 2021 Aug; 277():130131. PubMed ID: 34384166 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]