These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 31436961)
21. Anomalous concentrations of rare earth elements in acid mine drainage and implications for rare earth resources from late Permian coal seams in northern Guizhou. Li X; Qiao W; Chen D; Wu P; Xie Y; Chen X Sci Total Environ; 2023 Jun; 879():163051. PubMed ID: 36966834 [TBL] [Abstract][Full Text] [Related]
22. Assessing anthropogenic levels, speciation, and potential mobility of rare earth elements (REEs) in ex-tin mining area. Khan AM; Yusoff I; Bakar NKA; Bakar AFA; Alias Y Environ Sci Pollut Res Int; 2016 Dec; 23(24):25039-25055. PubMed ID: 27677993 [TBL] [Abstract][Full Text] [Related]
23. Critical review of functionalized silica sorbent strategies for selective extraction of rare earth elements from acid mine drainage. Wilfong WC; Ji T; Duan Y; Shi F; Wang Q; Gray ML J Hazard Mater; 2022 Feb; 424(Pt C):127625. PubMed ID: 34857400 [TBL] [Abstract][Full Text] [Related]
24. High contents of rare earth elements (REEs) in stream waters of a Cu-Pb-Zn mining area. Protano G; Riccobono F Environ Pollut; 2002; 117(3):499-514. PubMed ID: 11911532 [TBL] [Abstract][Full Text] [Related]
25. Mine drainage: Treatment technologies and rare earth elements. Wei X; Zhang S; Shimko J; Dengler RW Water Environ Res; 2019 Oct; 91(10):1061-1068. PubMed ID: 31291681 [TBL] [Abstract][Full Text] [Related]
26. Water, sediment and agricultural soil contamination from an ion-adsorption rare earth mining area. Liu WS; Guo MN; Liu C; Yuan M; Chen XT; Huot H; Zhao CM; Tang YT; Morel JL; Qiu RL Chemosphere; 2019 Feb; 216():75-83. PubMed ID: 30359919 [TBL] [Abstract][Full Text] [Related]
27. A novel bioelectrochemical system for chemical-free permanent treatment of acid mine drainage. Pozo G; Pongy S; Keller J; Ledezma P; Freguia S Water Res; 2017 Dec; 126():411-420. PubMed ID: 28987953 [TBL] [Abstract][Full Text] [Related]
28. Structural differences between light and heavy rare earth element binding chlorophylls in naturally grown fern: Dicranopteris linearis. Wei Z; Hong F; Yin M; Li H; Hu F; Zhao G; Wong JW Biol Trace Elem Res; 2005 Sep; 106(3):279-97. PubMed ID: 16141475 [TBL] [Abstract][Full Text] [Related]
29. Extreme enrichment of arsenic and rare earth elements in acid mine drainage: Case study of Wiśniówka mining area (south-central Poland). Migaszewski ZM; Gałuszka A; Dołęgowska S Environ Pollut; 2019 Jan; 244():898-906. PubMed ID: 30469284 [TBL] [Abstract][Full Text] [Related]
30. Ecological Risk Assessment of Neodymium and Yttrium on Rare Earth Element Mine Sites in Ganzhou, China. Zhao CM; Shi X; Xie SQ; Liu WS; He EK; Tang YT; Qiu RL Bull Environ Contam Toxicol; 2019 Oct; 103(4):565-570. PubMed ID: 31410500 [TBL] [Abstract][Full Text] [Related]
31. Recovery and separation of rare Earth elements using salmon milt. Takahashi Y; Kondo K; Miyaji A; Watanabe Y; Fan Q; Honma T; Tanaka K PLoS One; 2014; 9(12):e114858. PubMed ID: 25490035 [TBL] [Abstract][Full Text] [Related]
32. New reversed phase-high performance liquid chromatographic method for selective separation of yttrium from all rare earth elements employing nitrilotriacetate complexes in anion exchange mode. Dybczyński RS; Kulisa K; Pyszynska M; Bojanowska-Czajka A J Chromatogr A; 2015 Mar; 1386():74-80. PubMed ID: 25700726 [TBL] [Abstract][Full Text] [Related]
33. Characteristics and Environmental Response of White Secondary Mineral Precipitate in the Acid Mine Drainage From Jinduicheng Mine, Shaanxi, China. Lu C; Yang B; Cui X; Wang S; Qu C; Zhang W; Zhou B Bull Environ Contam Toxicol; 2021 Dec; 107(6):1012-1021. PubMed ID: 34417845 [TBL] [Abstract][Full Text] [Related]
34. Biosorption of metal and salt tolerant microbial isolates from a former uranium mining area. Their impact on changes in rare earth element patterns in acid mine drainage. Haferburg G; Merten D; Büchel G; Kothe E J Basic Microbiol; 2007 Dec; 47(6):474-84. PubMed ID: 18072248 [TBL] [Abstract][Full Text] [Related]
35. Recovery of Y(III) from wastewater by Pseudomonas psychrotolerans isolated from a mine soil. Zhang Y; Zhang T; Cai W; Owens G; Chen Z J Hazard Mater; 2024 Sep; 476():134973. PubMed ID: 38905975 [TBL] [Abstract][Full Text] [Related]
36. Zinc-Adeninate Metal-Organic Framework: A Versatile Photoluminescent Sensor for Rare Earth Elements in Aqueous Systems. Crawford SE; Gan XY; Lemaire PCK; Millstone JE; Baltrus JP; Ohodnicki PR ACS Sens; 2019 Aug; 4(8):1986-1991. PubMed ID: 31361472 [TBL] [Abstract][Full Text] [Related]
37. Indicator species drive the key ecological functions of microbiota in a river impacted by acid mine drainage generated by rare earth elements mining in South China. Chen Z; Zhong X; Zheng M; Liu WS; Fei Y; Ding K; Li Y; Liu Y; Chao Y; Tang YT; Wang S; Qiu R Environ Microbiol; 2022 Feb; 24(2):919-937. PubMed ID: 33848048 [TBL] [Abstract][Full Text] [Related]
38. Recovery of rare earth elements from acidic mine waters: An unknown secondary resource. Hermassi M; Granados M; Valderrama C; Ayora C; Cortina JL Sci Total Environ; 2022 Mar; 810():152258. PubMed ID: 34896513 [TBL] [Abstract][Full Text] [Related]
39. Enhanced Rare Earth Element Mobilization in a Mountain Watershed of the Colorado Mineral Belt with Concomitant Detection in Aquatic Biota: Increasing Climate Change-Driven Degradation to Water Quality. Rue GP; McKnight DM Environ Sci Technol; 2021 Nov; 55(21):14378-14388. PubMed ID: 34347463 [TBL] [Abstract][Full Text] [Related]
40. Enrichment of rare earth elements as environmental tracers of contamination by acid mine drainage in salt marshes: a new perspective. Delgado J; Pérez-López R; Galván L; Nieto JM; Boski T Mar Pollut Bull; 2012 Sep; 64(9):1799-808. PubMed ID: 22748838 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]