These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31436987)

  • 21. Probing the Existence of a Metastable Binding Site at the β
    Gaiser BI; Danielsen M; Marcher-Rørsted E; Røpke Jørgensen K; Wróbel TM; Frykman M; Johansson H; Bräuner-Osborne H; Gloriam DE; Mathiesen JM; Sejer Pedersen D
    J Med Chem; 2019 Sep; 62(17):7806-7839. PubMed ID: 31298548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure-Based Prediction of G-Protein-Coupled Receptor Ligand Function: A β-Adrenoceptor Case Study.
    Kooistra AJ; Leurs R; de Esch IJ; de Graaf C
    J Chem Inf Model; 2015 May; 55(5):1045-61. PubMed ID: 25848966
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accelerated molecular dynamics simulations of the octopamine receptor using GPUs: discovery of an alternate agonist-binding position.
    Kastner KW; Izaguirre JA
    Proteins; 2016 Oct; 84(10):1480-9. PubMed ID: 27318014
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Focus on Unusual ECL2 Interactions Yields β
    Scharf MM; Zimmermann M; Wilhelm F; Stroe R; Waldhoer M; Kolb P
    ChemMedChem; 2020 May; 15(10):882-890. PubMed ID: 32301583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Defining an Optimal Metric for the Path Collective Variables.
    Hovan L; Comitani F; Gervasio FL
    J Chem Theory Comput; 2019 Jan; 15(1):25-32. PubMed ID: 30468578
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DIRECT-ID: An automated method to identify and quantify conformational variations--application to β2 -adrenergic GPCR.
    Lakkaraju SK; Lemkul JA; Huang J; MacKerell AD
    J Comput Chem; 2016 Feb; 37(4):416-25. PubMed ID: 26558323
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simulating Protein Mediated Hydrolysis of ATP and Other Nucleoside Triphosphates by Combining QM/MM Molecular Dynamics with Advances in Metadynamics.
    Sun R; Sode O; Dama JF; Voth GA
    J Chem Theory Comput; 2017 May; 13(5):2332-2341. PubMed ID: 28345907
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differences between G-Protein-Stabilized Agonist-GPCR Complexes and their Nanobody-Stabilized Equivalents.
    Saleh N; Ibrahim P; Clark T
    Angew Chem Int Ed Engl; 2017 Jul; 56(31):9008-9012. PubMed ID: 28481446
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metadynamics-Based Approaches for Modeling the Hypoxia-Inducible Factor 2α Ligand Binding Process.
    Callea L; Bonati L; Motta S
    J Chem Theory Comput; 2021 Jul; 17(7):3841-3851. PubMed ID: 34082524
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting Optimal DEER Label Positions to Study Protein Conformational Heterogeneity.
    Mittal S; Shukla D
    J Phys Chem B; 2017 Oct; 121(42):9761-9770. PubMed ID: 28726404
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation of ECD conformational transition mechanism of GLP-1R by molecular dynamics simulations and Markov state model.
    Zhang J; Bai Q; Pérez-Sánchez H; Shang S; An X; Yao X
    Phys Chem Chem Phys; 2019 Apr; 21(16):8470-8481. PubMed ID: 30957116
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting the Conformational Variability of Abl Tyrosine Kinase using Molecular Dynamics Simulations and Markov State Models.
    Meng Y; Gao C; Clawson DK; Atwell S; Russell M; Vieth M; Roux B
    J Chem Theory Comput; 2018 May; 14(5):2721-2732. PubMed ID: 29474075
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insights into the role of Asp79(2.50) in β2 adrenergic receptor activation from molecular dynamics simulations.
    Ranganathan A; Dror RO; Carlsson J
    Biochemistry; 2014 Nov; 53(46):7283-96. PubMed ID: 25347607
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Markov State Models: From an Art to a Science.
    Husic BE; Pande VS
    J Am Chem Soc; 2018 Feb; 140(7):2386-2396. PubMed ID: 29323881
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigating drug-target association and dissociation mechanisms using metadynamics-based algorithms.
    Cavalli A; Spitaleri A; Saladino G; Gervasio FL
    Acc Chem Res; 2015 Feb; 48(2):277-85. PubMed ID: 25496113
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GRadient Adaptive Decomposition (GRAD) Method: Optimized Refinement Along Macrostate Borders in Markov State Models.
    Romano PG; Guenza MG
    J Chem Inf Model; 2017 Nov; 57(11):2729-2740. PubMed ID: 29035546
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unbinding Kinetics of a p38 MAP Kinase Type II Inhibitor from Metadynamics Simulations.
    Casasnovas R; Limongelli V; Tiwary P; Carloni P; Parrinello M
    J Am Chem Soc; 2017 Apr; 139(13):4780-4788. PubMed ID: 28290199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular dynamics simulations reveal fundamental role of water as factor determining affinity of binding of beta-blocker nebivolol to beta(2)-adrenergic receptor.
    Kaszuba K; Róg T; Bryl K; Vattulainen I; Karttunen M
    J Phys Chem B; 2010 Jul; 114(25):8374-86. PubMed ID: 20524635
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling GPCR active state conformations: the β(2)-adrenergic receptor.
    Simpson LM; Wall ID; Blaney FE; Reynolds CA
    Proteins; 2011 May; 79(5):1441-57. PubMed ID: 21337626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular dynamics simulations of the effect of the G-protein and diffusible ligands on the β2-adrenergic receptor.
    Goetz A; Lanig H; Gmeiner P; Clark T
    J Mol Biol; 2011 Dec; 414(4):611-23. PubMed ID: 22037586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.