These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
845 related articles for article (PubMed ID: 31436988)
1. Comparative Transcriptomic Analysis Reveals Regulatory Mechanisms of Theanine Synthesis in Tea ( Tai Y; Ling C; Wang H; Yang L; She G; Wang C; Yu S; Chen W; Liu C; Wan X J Agric Food Chem; 2019 Sep; 67(36):10235-10244. PubMed ID: 31436988 [TBL] [Abstract][Full Text] [Related]
2. Transcriptomic and phytochemical analysis of the biosynthesis of characteristic constituents in tea (Camellia sinensis) compared with oil tea (Camellia oleifera). Tai Y; Wei C; Yang H; Zhang L; Chen Q; Deng W; Wei S; Zhang J; Fang C; Ho C; Wan X BMC Plant Biol; 2015 Aug; 15():190. PubMed ID: 26245644 [TBL] [Abstract][Full Text] [Related]
3. Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). Li CF; Zhu Y; Yu Y; Zhao QY; Wang SJ; Wang XC; Yao MZ; Luo D; Li X; Chen L; Yang YJ BMC Genomics; 2015 Jul; 16(1):560. PubMed ID: 26220550 [TBL] [Abstract][Full Text] [Related]
4. Identification of a Novel Gene Encoding the Specialized Alanine Decarboxylase in Tea ( Bai P; Wei K; Wang L; Zhang F; Ruan L; Li H; Wu L; Cheng H Molecules; 2019 Feb; 24(3):. PubMed ID: 30717241 [TBL] [Abstract][Full Text] [Related]
5. Integrated transcriptomics and metabolomics analysis of catechins, caffeine and theanine biosynthesis in tea plant (Camellia sinensis) over the course of seasons. Gong AD; Lian SB; Wu NN; Zhou YJ; Zhao SQ; Zhang LM; Cheng L; Yuan HY BMC Plant Biol; 2020 Jun; 20(1):294. PubMed ID: 32600265 [TBL] [Abstract][Full Text] [Related]
6. Gene co-expression network analysis reveals coordinated regulation of three characteristic secondary biosynthetic pathways in tea plant (Camellia sinensis). Tai Y; Liu C; Yu S; Yang H; Sun J; Guo C; Huang B; Liu Z; Yuan Y; Xia E; Wei C; Wan X BMC Genomics; 2018 Aug; 19(1):616. PubMed ID: 30111282 [TBL] [Abstract][Full Text] [Related]
7. Studies on the Biochemical Formation Pathway of the Amino Acid l-Theanine in Tea (Camellia sinensis) and Other Plants. Cheng S; Fu X; Wang X; Liao Y; Zeng L; Dong F; Yang Z J Agric Food Chem; 2017 Aug; 65(33):7210-7216. PubMed ID: 28796499 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome Analysis Reveals the Mechanism of Fluoride Treatment Affecting Biochemical Components in Zhu J; Pan J; Nong S; Ma Y; Xing A; Zhu X; Wen B; Fang W; Wang Y Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30634430 [TBL] [Abstract][Full Text] [Related]
9. Low caffeine content in novel grafted tea with Camellia sinensis as scions and Camellia oleifera as stocks. Deng WW; Li M; Gu CC; Li DX; Ma LL; Jin Y; Wan XC Nat Prod Commun; 2015 May; 10(5):789-92. PubMed ID: 26058159 [TBL] [Abstract][Full Text] [Related]
10. Characterization of l-Theanine Hydrolase Fu X; Cheng S; Liao Y; Xu X; Wang X; Hao X; Xu P; Dong F; Yang Z J Agric Food Chem; 2020 Sep; 68(39):10842-10851. PubMed ID: 32866009 [TBL] [Abstract][Full Text] [Related]
11. Differential accumulation of specialized metabolite l-theanine in green and albino-induced yellow tea (Camellia sinensis) leaves. Cheng S; Fu X; Liao Y; Xu X; Zeng L; Tang J; Li J; Lai J; Yang Z Food Chem; 2019 Mar; 276():93-100. PubMed ID: 30409668 [TBL] [Abstract][Full Text] [Related]
12. Nitrogen-Regulated Theanine and Flavonoid Biosynthesis in Tea Plant Roots: Protein-Level Regulation Revealed by Multiomics Analyses. Wang Y; Cheng X; Yang T; Su Y; Lin S; Zhang S; Zhang Z J Agric Food Chem; 2021 Sep; 69(34):10002-10016. PubMed ID: 34406741 [TBL] [Abstract][Full Text] [Related]
13. The R2R3-MYB transcription factor CsMYB73 negatively regulates l-Theanine biosynthesis in tea plants (Camellia sinensis L.). Wen B; Luo Y; Liu D; Zhang X; Peng Z; Wang K; Li J; Huang J; Liu Z Plant Sci; 2020 Sep; 298():110546. PubMed ID: 32771159 [TBL] [Abstract][Full Text] [Related]
14. Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in 'Anji Baicha' (Camellia sinensis). Li CF; Xu YX; Ma JQ; Jin JQ; Huang DJ; Yao MZ; Ma CL; Chen L BMC Plant Biol; 2016 Sep; 16(1):195. PubMed ID: 27609021 [TBL] [Abstract][Full Text] [Related]
15. Gene Coexpression Network Reveals Insights into the Origin and Evolution of a Theanine-Associated Regulatory Module in Non- Du J; He X; Zhou Y; Zhai C; Yu D; Zhang S; Chen Q; Wan X J Agric Food Chem; 2021 Jan; 69(1):615-626. PubMed ID: 33372777 [TBL] [Abstract][Full Text] [Related]
16. CsGOGAT Is Important in Dynamic Changes of Theanine Content in Postharvest Tea Plant Leaves under Different Temperature and Shading Spreadings. Liu ZW; Li H; Wang WL; Wu ZJ; Cui X; Zhuang J J Agric Food Chem; 2017 Nov; 65(44):9693-9702. PubMed ID: 29020770 [TBL] [Abstract][Full Text] [Related]
17. Molecular Basis of the Distinct Metabolic Features in Shoot Tips and Roots of Tea Plants ( Zhang Y; Li P; She G; Xu Y; Peng A; Wan X; Zhao J J Agric Food Chem; 2021 Mar; 69(11):3415-3429. PubMed ID: 33719427 [TBL] [Abstract][Full Text] [Related]
18. Transcriptomic analyses reveal variegation-induced metabolic changes leading to high L-theanine levels in albino sectors of variegated tea (Camellia sinensis). Xie N; Zhang C; Zhou P; Gao X; Wang M; Tian S; Lu C; Wang K; Shen C Plant Physiol Biochem; 2021 Dec; 169():29-39. PubMed ID: 34749269 [TBL] [Abstract][Full Text] [Related]
19. Occurrence and de novo biosynthesis of caffeine and theanine in seedlings of tea (Camellia sinensis). Deng WW; Ashihara H Nat Prod Commun; 2015 May; 10(5):703-6. PubMed ID: 26058139 [TBL] [Abstract][Full Text] [Related]
20. Identification of Zhang S; Chen Y; He X; Du J; Zhang R; Ma Y; Hu X; Zhang Z; Chen Q; Wan X J Agric Food Chem; 2020 Jan; 68(3):918-926. PubMed ID: 31899636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]